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Abstract
This paper contains a review of the development in modeling and applications of atomic force
microscopy (AFM) modes. AFM is commonly used for atomic and nano-scale surface
measurement. Two operational modes of AFM exist: static mode and dynamic mode. In
dynamic AFM mode, a cantilever is driven to vibrate by its holder or the sample. The changes
of cantilever vibration parameters due to tip–sample interaction are used to reveal surface
properties of samples. Analytical and numerical models that can accurately simulate
surface-coupled cantilever dynamics are essential for explaining AFM scanning images and
evaluating a sample’s material properties. The objective of this paper is to categorize the
existing AFM dynamic modes and measurement techniques in terms of cantilever deflection
and excitation mechanism, summarize AFM cantilever models presented in the literature, and
demonstrate the applications of these models in AFM mode simulations. Based on the relations
between cantilever responses and tip–sample interaction, methods for quantitative evaluation of
a sample’s mechanical parameters are described.
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Abbreviations

AFAM Atomic force acoustic microscopy
AFFM Acoustic friction force microscopy
AFM Atomic force microscopy
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force microscopy
DOF Degrees of freedom
FE Finite element
FFM Friction force microscopy
FM-AFM Frequency modulation atomic

force microscopy
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FMM Force modulation mode
FRF Frequency response function
HOPG Highly oriented pyrolytic graphite
LE mode Lateral excitation mode
LFM Lateral force microscopy
LM-AFM Lateral force modulation atomic

force microscopy
MP Metal particle
NC-AFM Non-contact atomic force microscopy
STM Scanning tunneling microscopy
TM Tapping mode
TR mode Torsional resonance mode
UAFM Ultrasonic atomic force microscopy

1. Introduction

Atomic force microscopy (AFM) is commonly used for atomic
and nano-scale measurement of various properties, including
surface topography, friction, adhesion, and viscoelasticity
(Bhushan 2005, 2007). During measurement, a micro-
cantilever is scanned over a sample surface. Surface
properties are revealed by observing the cantilever deflections
or dynamic changes of vibration parameters (amplitude,
resonance frequency, and phase angle) due to tip–sample
interaction. Figure 1 shows the schematic diagram of an AFM
tip–cantilever assembly interacting with a sample surface.
The scanning is implemented by the motion of a cylindrical
piezoelectric tube, which can act as the holder of either the
cantilever or the sample. The deflection of the cantilever is
measured using the optical lever method. A laser beam is
projected on the upper surface of the cantilever close to the
tip (point C). The reflected beam is led by a mirror into a
four-segment photo-diode. The flexural angle (θC

y ) and twist
of the cantilever (θC

x ) are obtained by calibrating the vertical
and lateral voltage outputs of the photo-diode, respectively.

AFM cantilever deflection and vibration information un-
der tip–sample interaction are utilized for surface topography,
friction and material property imaging. For a quantitative ex-
planation of these images and evaluation of material mechan-
ical properties, the relationship between cantilever response
and tip–sample interaction needs to be established. Analytical
and numerical models that can accurately simulate the surface-
coupled dynamics of the cantilever are essential for this pur-
pose. In addition, a thorough understanding of cantilever dy-
namics is helpful for the development of AFM measurement
techniques.

1.1. Various AFM modes and measurement techniques

Two types of micro-cantilevers are commonly used in AFM
applications: rectangular and V-shaped cantilevers. Due to
its geometric complexity, the calibration and modeling of a
V-shaped cantilever is much more difficult than that of a
rectangular cantilever. Since in practice rectangular cantilevers
can perform at least equally well as V-shaped cantilevers, the
universal use of rectangular cantilevers has been suggested by
some researchers (Sader 2003, Sader and Sader 2003). In this

Figure 1. Schematic diagram of an AFM tip–cantilever assembly
interacting with a sample surface. The four-segment photo-diode
measures the flexural angle θC

y and twist angle θC
x of the cantilever.

Figure 2. Four deformation shapes of a rectangular cantilever with
free–clamped boundary conditions. Vertical bending is related to
flexural angle θy and normal deflection dz . Lateral bending is related
to rotation angle θz and lateral deflection dy . Twist angle θx is due to
cantilever torsion. Extension causes the cantilever longitudinal
displacement dx .

review paper, we will confine our discussions to rectangular
cantilevers.

A rectangular cantilever in AFM can be modeled as a
three-dimensional (3D) beam with clamped–free boundary
conditions. As shown in figure 2, the cantilever has four
deformation shapes: vertical bending (bending about the y
axis), lateral bending (bending about the z axis), torsion (about
the x axis), and extension (along the x axis). Vertical bending
is related to flexural angle θy and normal deflection dz . Lateral
bending is related to rotation angle θz and lateral deflection
dy . Twist angle θx is due to cantilever torsion. Extension
causes the cantilever longitudinal displacement dx . In terms of
the cantilever state of motion during measurement, two basic
types of AFM modes exist: static mode and dynamic mode. In
static AFM modes, the cantilever is in quasi-static motion. In
dynamic AFM modes, the cantilever is driven to vibrate near or
at its resonance frequency, and then the cantilever tip is brought
to the proximity of a sample surface for imaging. Compared
to static AFM, dynamic AFM can provide a better signal-to-
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Table 1. Summary of AFM modes.

Static modes

Mode Cantilever deflection Output Detected surface properties

Contact mode Vertical bending Normal
deflection

Topography, adhesion

Friction force
microscopy

Vertical bending, torsion and lateral bending Normal
deflection and
twist angle

Topography, friction

Dynamic modes

Mode Schematics Cantilever
deflection

Excitation
source

Driving
frequency

Output Detected
surface
properties

Tapping mode,
non-contact
AFM

Vertical
bending

Holder Fundamental
flexural
resonance
frequency

Normal
deflection
amplitude,
phase and
frequency
shift

Topography
and normal
viscosity

Force
modulation
mode, atomic
force acoustic
microscopy
mode

Vertical
bending

Sample
surface
or holder

Fundamental
and higher
order flexural
resonance
frequency

Normal
deflection
amplitude
and
resonance
frequency

Normal stiffness

Torsional
resonance mode

Torsion
and lateral
bending

Holder Torsional
resonance
frequency

Torsional
amplitude,
phase and
resonance
frequency

Topography,
lateral
stiffness and
viscosity

Lateral
excitation
mode

Torsion and
lateral
bending

Sample
surface

In a wide range,
from very low
(∼20 kHz)
to very high
(up to 3 MHz)

Torsional
amplitude,
phase and
resonance
frequency

Topography,
friction,
lateral stiffness
and viscosity

Combined
normal and
lateral
excitation mode

Vertical
bending,
torsion
and
lateral
bending

Sample
surface

In vertical
direction higher
than first flexural
resonance
frequency; in
lateral direction
much lower than
torsional resonance
frequency

Normal
deflection
amplitude
and phase,
torsional
amplitude,
phase and
resonance
frequency

Normal stiffness
and lateral
stiffness

noise ratio and higher resolution in measurement of material
and surface properties (Turner et al 1997, Dupas et al 2001,
Garcı́a and Pérez 2002).

Table 1 summarizes static and dynamic AFM modes.
Static AFM modes include contact mode and friction force
microscopy (FFM, or lateral force microscopy, LFM). In
contact mode (MultiMode™ SPM Instructor Manual 1997),
the cantilever tip is in constant contact with the sample surface.

The cantilever normal deflection is monitored from flexural
angle θC

y . The normal tip–sample interaction force is calculated
as the product of cantilever spring constant (stiffness of vertical
bending) and normal deflection. By keeping a constant normal
deflection through the z motion of the piezotube, the surface
topography is tracked. If the cantilever is brought to the
sample surface, pressed down and then pulled away, a force–
distance curve can be obtained for adhesion measurement.

3
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Figure 3. TM topography and phase angle images for MP tape. The setpoint is defined as the ratio of the cantilever vibration amplitudes after
engagement to the free amplitude in air (Bhushan and Qi 2003).

FFM (Mate et al 1987, Marti et al 1990, Meyer and Amer
1990) is commonly used for friction measurement. In constant-
force mode of FFM, a constant normal load is maintained, and
the cantilever tip is scanned over sample surfaces. The scan
direction is perpendicular to the longitudinal direction of the
cantilever, and the friction force along that direction is obtained
by measuring the cantilever twist angle.

Dynamic AFM modes considered here are categorized
as the following types in terms of cantilever deflection and
excitation mechanism: (1) tapping mode (TM), non-contact
AFM (NC-AFM); (2) force modulation mode (FMM), atomic
force acoustic microscopy (AFAM) mode (or ultrasonic atomic
force microscopy, UAFM); (3) torsional resonance (TR) mode;
(4) lateral excitation (LE) mode; (5) combined normal and
lateral excitation mode.

In TM and NC-AFM, vertical bending dominates the
cantilever deflection and the cantilever is excited by the
vertical harmonic motion of its holder. TM is also named
amplitude modulation AFM (AM-AFM). In TM, the cantilever
is driven at a fixed frequency close or equal to the fundamental
resonance frequency of vertical bending. During measurement,
the vibrating tip touches the sample surface intermittently.
The vibration amplitude is compared to the setpoint and
the difference is used as a feedback parameter to track
sample topography. The phase can be used for material
viscosity imaging. Figure 3 shows the TM topography and
phase angle images for a metal particle (MP) tape (Bhushan
and Qi 2003). The topography and phase images show
different characteristics. The phase image is correlated to the
viscoelastic properties of the MP tape.

NC-AFM is also called frequency modulation AFM (FM-
AFM) (Albrecht et al 1991). In NC-AFM, the cantilever is
always oscillated at its resonance frequency with a constant

amplitude. During measurement, the vibrating tip does not
touch the sample surface. Under the tip–sample interaction, the
cantilever resonance frequency and oscillation amplitude are
changing. A feedback loop detects the cantilever oscillation
signal, shifts it by 90◦, and uses it as the excitation signal so
that the cantilever is always excited in resonance. Another
feedback loop adjusts the excitation amplitude to keep the
cantilever oscillating at a constant amplitude. In NC-
AFM, the excitation signal is self-driven by the cantilever
oscillation, which is dramatically different from the constant
excitation used in TM. The spatial difference of frequency shift
due to the tip–sample interaction can be used for contrast.
The topography images are obtained by varying the tip–
sample distance during the scan to keep a constant frequency
shift. Compared to TM, NC-AFM can improve the imaging
resolution dramatically by using a very high quality factor
Q. Using NC-AFM, atomic resolution can be obtained by
reducing the tip–sample distance and working in vacuum
(Giessibl 1995, Kitamura and Iwatsuki 1995).

The dominant cantilever deflection in FMM and AFAM
is vertical bending. In FMM and AFAM, the cantilever is
driven to vibrate by the vertical motion of either the sample
surface or the holder. During measurement, the cantilever tip
is in constant contact with the sample surface and driven to
vibrate vertically. The amplitude of the tip is kept as small as
possible in order that the linear approximation of tip–sample
forces is allowed, and to avoid lift-off. In FMM (Maivald
et al 1991, Scott and Bhushan 2003), topography information
is first obtained during primary scanning using TM. During
interleave scanning, the cantilever is moved up and down at
the resonance frequency of the holder’s bimorph (below the
fundamental resonance of the cantilever). The z-direction
feedback control is deactivated and the topography information
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from the primary scan is used to maintain a constant lift scan
height. The cantilever vibration amplitude can be used to
image local stiffness. FMM can be used for elasticity contrast
for soft materials such as polymers. For stiffer materials such
as metals and ceramics, the contact stiffness between tip and
surface is much higher than the spring constant of the cantilever
(ranging from 0.01 to 80 N m−1). The samples do not deform
and thus the contrast due to elasticity becomes very low. In
AFAM (Rabe and Arnold 1994, Yamanaka and Nakano 1996,
Rabe et al 1996, 1998, 2000, 2002, Turner et al 1997, Amelio
et al 2001, Hurley et al 2003, Turner 2004), the cantilever
is driven at ultrasonic frequencies at the fundamental contact
resonance and several other higher-order contact resonances.
At higher-order modes, the effective stiffness of the cantilever
is enhanced to deform the samples and sample elasticity can be
evaluated.

In TR mode (Bhushan and Kasai 2004, Huang and
Su 2004, Kasai et al 2004, Reinstädtler et al 2005a), two
piezoelectric elements are attached to the cantilever holder
and vibrate out of phase to drive the cantilever into torsional
oscillation. Under lateral (in-plane) tip–sample interaction, a
lateral force and a torque are exerted on the cantilever, causing
it to deflect in a combination of torsion and lateral bending.
In LE mode (Yamanaka and Tomita 1995, Scherer et al 1999,
Reinstädtler et al 2003, 2005b, Caron et al 2004), the cantilever
is driven to vibrate by the lateral oscillation of sample surfaces
in a direction perpendicular to the longitudinal axis of the
cantilever. As in TR mode, the cantilever in LE mode deflects
in both torsion and lateral bending. Compared to other AFM
modes such as TM, in which the tip–sample interaction is
mainly in the normal direction, TR and LE modes were
developed for in-plane surface property measurement. The
properties of materials like thin films can be measured more
readily with TR and LE modes. In addition, TR and LE modes
have some inherent advantages in surface property imaging.
(1) In TR and LE modes, the cantilever tip vibrates laterally
(parallel) to the sample surface. During measurements, the tip
remains close to the sample surface, ensuring more intensive
tip–sample interaction and more surface material property-
related information (Kasai et al 2004). (2) The torsional/lateral
bending stiffness of a cantilever is typically two orders of
magnitude higher than that of vertical bending. Therefore,
most of the deformation in TR and LE modes occurs in the
sample. TR and LE modes can be used to measure stiff and
hard samples (Kasai et al 2004).

Two operation modes are possible for TR mode. In one
mode, the cantilever is excited into torsional vibration and
then approached to the sample surface. By keeping a constant
torsional amplitude, surface topography can be measured from
the z piezomotion (Huang and Su 2004, Kasai et al 2004). The
then-obtained torsional phase data can be used for imaging
of material viscoelasticity (Kasai et al 2004). In the second
mode, the cantilever is pressed on the sample surface with a
constant normal load and then driven to vibrate at a frequency
equal or close to the torsional contact resonance frequency.
The variation of resonance frequency, torsional amplitude, and
phase angle are used for mapping of material properties (Chen
and Bhushan 2005, Reinstädtler et al 2005a). Figure 4 shows

the images of an MP tape using TM, TR mode I (constant
amplitude) and TR mode II (constant deflection) (Chen and
Bhushan 2005). Compared to the TM phase angle image,
better contrast resulting from variations in viscoelasticity can
be seen in the phase angle image using TR mode I. Amplitude
and phase angle images using TR mode II have the largest
contrast.

LE mode refers to the AFM measurement techniques in
which the cantilever is driven by the lateral oscillation of
sample surfaces through tip–sample interaction, such as lateral
force modulation AFM (LM-AFM) (Yamanaka and Tomita
1995), acoustic friction force microscopy (AFFM) (Scherer
et al 1999), and lateral atomic force acoustic microscopy
(lateral AFAM) (Reinstädtler et al 2003, 2005b, Caron et al
2004). The excitation frequency of sample surfaces could
be in a wide range. In LM-AFM, the sample is laterally
vibrated at a frequency (∼16 kHz) well below the cantilever
torsional/lateral bending resonance frequency. The torsional
amplitude and phase are employed for friction imaging. In
AFFM and lateral AFAM, the sample oscillates laterally at
megahertz frequencies (up to 3 MHz) to excite the cantilever in
torsional or lateral bending resonance. The torsional amplitude
and contact resonance spectra are used for friction imaging.
Compared with conventional FFM, the advantages of friction
measurement using LE mode are that the topography-induced
friction can be reduced significantly and friction measurement
can be operated at higher relative velocities (of the order of
1 mm s−1).

In combined normal and lateral excitation mode, which
can be viewed as a combination of AFAM and LM-AFM,
the cantilever is vertically excited by the sample surface
at a frequency much higher than the flexural fundamental
resonance frequency so that the tip is cyclically indented into
the sample (Yamanaka et al 1994). At the same time, lateral
oscillation of the surface at a frequency much lower than
the cantilever torsional/lateral bending resonance frequency
induces the cantilever vibration in torsional and lateral
bending. By modulating the flexural vibration amplitude,
subsurface features of normal stiffness can be imaged. The
lateral stiffness of the subsurface can be imaged from the
torsional responses of the cantilever.

1.2. Models for AFM cantilevers

Analytical and numerical models have been developed for
dynamic simulation of AFM cantilevers with and without tip–
sample interaction. Table 2 summarizes the AFM cantilever
models for dynamic modeling.

Due to the existence of attractive and repulsive interaction
regimes and the nonlinear nature of the normal tip–sample
interaction forces, the dynamic behavior of a cantilever in
TM and NC-AFM is very complicated. Point-mass models
are employed in the investigation of cantilever dynamics
in TM and NC-AFM. Point-mass models approximate the
dynamics of the distributed-parameter cantilever system by the
motion equation of a lumped mass. Using the point-mass
models, researchers have obtained the analytical descriptions
of nonlinear cantilever dynamics and provided insightful

5



J. Phys.: Condens. Matter 20 (2008) 225012 Y Song and B Bhushan

Figure 4. Images of MP tape using TM, TR mode I (constant amplitude) and TR mode II (constant deflection) (Chen and Bhushan 2005).

(This figure is in colour only in the electronic version)

understanding of physical factors governing the motion of the
cantilever (Chen et al 1994, Giessibl 1997, Wang 1998, 1999,
San Paulo and Garcı́a 2001).

It is recognized that in experiments higher-order flexural
modes of the cantilever are often excited. Point-mass models
cannot simulate the cantilever dynamics involving higher-
order modes besides the fundamental one (Rabe et al 1996,
Turner et al 1997, Stark et al 2004). Neither can point-mass
models account for the effects of the geometry and location
of the tip on the cantilever dynamics. Furthermore, point-
mass models provide solutions corresponding to the cantilever
vertical displacement while in experiment the detecting system
of the AFM measures the rotation angle of the cantilever. This
could give rise to some inaccuracy in data explanation since
the vertical displacement and rotation angle of a vibrating
cantilever do not have a one-to-one relation when higher modes
of the cantilever are involved. One-dimensional (1D) beam
models (Butt and Jaschke 1995, Rabe et al 1996, 1998, Lee
et al 2002, Stark et al 2004) have been employed to investigate
the cantilever response in TM and AFAM. Using the 1D beam
models, analytical modal analyses of the tip–cantilever system
were performed by representing the tip–sample interaction

by a linear spring and dashpot (Rabe et al 1996, Turner
et al 1997, Wright and Nishiguchi 1997, Dupas et al 2001).
This linearization is valid only if the tip oscillates around an
equilibrium position with very small amplitudes. Considering
the nonlinear Hertzian contact boundary conditions, the
nonlinear amplitude–frequency relation for various flexural
modes were obtained using the method of multi-scales (Turner
2004). In many cases, numerical methods, e.g. the finite
element (FE) method (Arinero and Lévêque 2003, Song and
Bhushan 2006b) or mode superposition method (Lee et al
2002, Stark et al 2004), are employed to simulate the nonlinear
dynamics of a 1D beam.

In operation of TR and LE modes, the lateral oscillation
of the cantilever tip over the sample surface is quite small
(0.3–2 nm for TR mode and ∼1 nm for LE mode).
The tip–surface distance (therefore normal tip–sample force)
remains almost constant, and the vertical deflection of
the cantilever is uncoupled with the torsion and lateral
bending. The dynamic response of the cantilever in TR
and LE modes has been modeled as the pure torsional
vibration of a shaft. Torsional modal analyses of the tip–
cantilever system were performed with linear elastic tip–

6
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Table 2. Summary of cantilever models for dynamic modeling.

Model Schematics Deflection modeled Applications

1D point-mass model Vertical bending Non-contact mode, tapping
mode

1D beam model Vertical bending Tapping mode, atomic force
acoustic microscopy

Torsional model Torsion Torsional resonance mode,
lateral excitation mode

Coupled torsional–bending model Torsion and lateral bending Torsional resonance mode,
lateral excitation mode

3D point-mass model 3D translational displacements Profiling process of friction
force microscopy

3D finite element model Vertical bending, torsion
and lateral bending

Profiling process of friction
force microscopy, all dynamic
AFM modes

sample interaction (Yamanaka and Nakano 1998). The relation
between the torsional amplitude/phase shift and lateral contact
stiffness/viscosity in TR mode was derived in a forced torsional
analysis (Song and Bhushan 2005, 2006a). The coupled
torsional–bending model, which considers both the torsion and
lateral bending of the cantilever in TR and LE modes, was
developed recently (Song and Bhushan 2006c).

A 3D point-mass model (Hölscher et al 1996, 1997,
1998) was developed to simulate the tip motion during the
profiling process of FFM. In the 3D point-mass model,
the tip–cantilever system is represented by three masses
connected by elastic springs to its holder. The point-mass
model has three uncoupled translational degrees of freedom
(DOFs). In each translational direction, the motion of the
point mass is described as a single DOF oscillator. The
friction force in this direction is obtained as the product
of the translational displacement (relative to the holder)
of the mass and the spring stiffness. As a mathematical
approximation of the real tip–cantilever system, this model’s
parameters (effective masses and spring stiffnesses) can only
be obtained by estimation, and the simulated responses are
translational displacements instead of the rotation angles
detected in FFM. The 3D point-mass model also neglects
the coupling between the lateral bending and torsion of the
cantilever.

The 3D FE beam model of tip–cantilever systems (Song
and Bhushan 2006b) was developed for numerical simulation

of free (without tip–sample interaction) and surface-coupled
(with tip–sample interaction) dynamics of AFM cantilevers
in various dynamic modes. Representing the cantilever by
3D beam elements, this versatile model can address the exact
excitation mechanisms, tip geometry/location, tilting of the
cantilever to the sample surface, and all the possible couplings
among the different deflections of the AFM cantilever. The
FE model’s parameters can be determined from the cantilever
geometry and material properties. Translational displacements,
as well as flexural and twist angles, are the simulated cantilever
responses. The 3D FE beam model was used in the simulations
of atomic-scale topographic and friction profiling process of
FFM and AFM TM operated in liquid (Song and Bhushan
2006d, 2007).

In section 2, tip–sample interaction forces are described
and analytical modeling techniques of AFM dynamic modes
are investigated. In section 3, a 3D FE beam model is
introduced for numerical simulation of free and surface-
coupled dynamics of the tip–cantilever system in TM, TR
and LE modes. In section 4, the 3D FE beam model is
applied in simulations of the FFM profiling process and TM
operated in liquid. In section 5, methods of evaluating
the sample’s mechanical properties from measured contact
stiffness/viscosity are discussed. Section 6 concludes this
paper.

7



J. Phys.: Condens. Matter 20 (2008) 225012 Y Song and B Bhushan

Figure 5. Normal interaction force described by van der Waals force and DMT contact force, and lateral interaction forces described by
Hertzian contact theory.

2. Analytical modeling of AFM tip–cantilever
systems

Analytical models have been developed for modeling AFM
cantilever dynamics with and without tip–sample interaction.
These models are used for various AFM modes with different
cantilever deflections and excitation mechanisms. Cantilever
responses, including contact resonance frequency, vibration
amplitude and phase angle, have been used for material
property imaging. The purpose of dynamic modeling of tip–
cantilever systems is to investigate the relations between the
cantilever responses and the tip–sample interaction. Tip–
sample interaction is related to the sample’s material properties
and the cantilever’s geometry and material properties. These
derived relations between cantilever responses and tip–sample
interaction can be used for a quantitative explanation of AFM
images and the evaluation of a sample’s material properties.
Modeling of cantilever dynamics also helps us understand
the difference between cantilever behaviors and determine the
application conditions of different dynamic modes.

2.1. Tip–sample interaction

To investigate the cantilever response during measurement,
tip–sample interaction needs to be described first. The
interaction between a cantilever tip and a sample can be
modeled as the interaction between a sphere and a flat surface.
Two different interaction regimes, attractive and repulsive, are
distinguished in the normal direction of the cantilever. A van
der Waals force is widely used to describe the long-range
attractive force. Neglecting the energy dissipation in tip–
sample contact, the short-range repulsive force in the normal
direction can be calculated using the JKR (Johnson et al 1971)
or DMT (Derjaguin et al 1975) model. The JKR model is
suitable for soft, compliant materials with high adhesion forces
and large tip radii, while the DMT model is suitable to describe
the contact forces of hard, stiff materials with low adhesion
forces and small tip radii. Adopting the DMT model, the

normal interaction force can be described as

fn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

− H R

6d2
n

,

dn > a0

− H R

6a2
0

+ 4

3
E∗√R(a0 − dn)

3/2 − ηn(a0 − dn)
1/2ḋn,

dn � a0.

(1)
Here, dn is the transient tip–sample separation, H is the
Hamaker constant, R is the tip radius, a0 is the intermolecular
distance, ηn is the viscosity of the tip–sample contact in the
normal direction, ‘·’ represents the differential with respect
to time t , and E∗ is the effective elastic modulus given by
E∗ = [(1 − ν2

t )/Et + (1 − ν2
s )/Es]−1, where Et, Es, νt, and

νs are the elastic moduli and Poisson’s ratios of the tip and
sample, respectively.

According to the Hertzian contact theory (Johnson 1985),
the tip–sample interaction force in the lateral direction is a
function of the repulsive contact force, i.e.,

flat =

⎧
⎪⎨

⎪⎩

0, dn > a0

−8G∗
(

3R fc

4E∗

)1/3

δlat − ηlatδ̇lat, dn � a0

(2)

where fc = 4
3 E∗√R(a0 − dn)

3/2 is the normal contact force,
ηlat is the lateral viscosity of the tip–sample contact, δlat is the
lateral relative displacement between the tip and sample, the
effective shear modulus G∗ is given by G∗ = [(2 − vt)/G t +
(2 − vs)/Gs]−1, and G t and Gs are the shear moduli of the tip
and sample.

Figure 5 shows the tip–sample interaction forces in normal
and lateral directions between a cantilever and an HOPG
(highly oriented pyrolytic graphite) sample. No energy
dissipation due to the tip–sample interaction is considered
(ηn = 0, ηlat = 0). The interaction in the normal direction
is divided into two regimes. A negative value implies attractive
force, whereas positive value represents repulsive force. The
lateral interaction force is linearly proportional to lateral

8
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Figure 6. Schematic diagram of a point-mass model. The cantilever
is excited to vibrate by the harmonic oscillation of the holder. D is
the equilibrium tip–sample separation when the tip is far away from
the sample when gz = 0, Z is the spring deformation, and
dn = D + Z + gz(t) is the transient tip–sample separation.

relative displacement. The lateral contact stiffness depends on
the normal contact force or tip–sample separation.

In the normal direction, if the cantilever is vibrating
around an equilibrium position dn = D with very small
amplitudes, the tip–sample interaction can be linearized using
a linear viscoelastic model. The normal and lateral contact
stiffnesses are determined by

kn = − ∂ fn

∂dn

∣
∣
∣
∣
dn=D

=
⎧
⎨

⎩

− H R

3D3
, dn > a0

2E∗√R(a0 − D)1/2, dn � a0

(3)

klat = −∂ flat

∂δlat
=

⎧
⎪⎨

⎪⎩

0, dn > a0

8G∗
(

3R fc

4E∗

)1/3

, dn � a0.
(4)

In a repulsive regime (dn � a0), one may rewrite the normal
and lateral contact stiffnesses as

kn = 2ac E∗, (5)

klat = 8acG∗ (6)

where ac = (
3R fc

4E∗ )1/3 is the contact radius.

2.2. Point-mass model

Cantilever tip motion in AM-AFM and FM-AFM can be
described by the point-mass model shown in figure 6. The
cantilever holder is in a harmonic oscillation gz(t) =
hg cos(�t). The motion equation of the point mass is governed
by a nonlinear second-order differential equation

m Z̈ + cŻ + k Z = fn − mg̈z (7)

where Z is the cantilever deflection, and m, c and k are
the effective mass, viscous damping coefficient and spring
constant of the cantilever, respectively. The effective mass can
be obtained from m = k/ω2

0, where ω0 is the fundamental
natural frequency (in radians) of the cantilever. The damping
coefficient is often expressed as c = mω0/Q. The quality
factor Q is a measure of the sharpness of the resonance spectra.
Without tip–sample interaction, equation (7) is rewritten as

Z̈ + ω0

Q
Ż + ω2

0 Z = �2hg cos(�t). (8)

The solution of equation (8) is

Z = Ate
−ω0 t/2Q sin

(√
1 − (1/2Q)2ω0t + ϕt

)

+ A0 cos(�t + ϕ). (9)

The solution consists of an exponentially decaying transient
term and a steady-state oscillation. After a time of 2Q/ω0,
the transient term decays by a factor of 1/e. The steady-
state oscillation has the same frequency � as the excitation.
The amplitude and phase of the steady-state oscillation are
expressed by

A0 = hg�
2

√

(�2 − ω2
0)

2 + (�ω0/Q)2
(10)

ϕ = tan−1

(
�ω0

Q(�2 − ω2
0)

)

. (11)

When the driving frequency is equal to the resonance
frequency of the undamped cantilever, � = ω0, we have the
relation

A0 = Qhg . (12)

In AM-AFM, Wang (1998, 1999) applied the Krylov–
Bogoliubov–Mitroposky asymptotic approximation to obtain
the relations between oscillation response and normal
interaction. A harmonic oscillation Z = Ac cos(�t + ϕ) =
Ac cos θ̃ is assumed and the following relations are deduced:

Ac = hg�
2

(1 + �̃)

√

α2
e + (�̃ − ω̃e)2

(13)

ϕ = tan−1 ω̃e − �̃

αe
(14)

where

αe = α0 + 2

π

∫ θ̃0

0
αs sin2 θ̃ dθ̃ (15)

ω̃2
e = 1 + 1

πk Ac

∫ θ̃0

0
fn(Ac cos θ̃ ) cos θ̃ dθ̃ . (16)

Here, α0 = 1/2Q is the damping of the cantilever, αs is the
damping from the normal interaction, �̃ = �/ω0, ω̃e is the
normalized effective resonance frequency, and θ̃0 is determined
from the contact position

cos θ̃0 = D + a0

Ac
. (17)

The phase angle measured in AM-AFM is related to the
energy dissipation due to the tip–sample interaction (Cleveland
et al 1998, Tamayo and Garcı́a 1998). In the steady-state
oscillation, the external energy supplied to the cantilever must
equal the energy dissipated via tip–sample interaction (Edis)
and cantilever viscous damping in air. Under the assumption
of a sinusoidal cantilever response, the following expression is
obtained:

sin ϕ = �

ω0

Ac(�)

A0
+ QEdis

πk A0 Ac(�)
(18)

9
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where A0 is the free amplitude and Ac(�) is the setpoint
amplitude in AM-AFM.

In FM-AFM, the resonance frequency shift due to tip–
sample interaction is utilized to produce surface images. In
the case of small oscillation amplitude, the interaction can be
approximated as a linear spring with stiffness kn, as shown
in equation (3). The resonance frequency of the point-mass
system under tip–sample interaction is calculated by

ωc =
√

(k + kn)

m
= ω0

√

1 + kn

k
. (19)

Approximately, the frequency shift can be expressed as

�ω = ωc − ω0

2π
≈ ω0

2k
kn. (20)

In FM-AFM, the oscillation amplitudes are usually large
compared to the tip–sample interaction range. Perturbation
theory has to be employed to calculate the frequency shift.
Using the first-order perturbation theory, Giessibl (1997)
deduced the relation between frequency shift and the average
work done by normal interaction force in a harmonic cycle

�ω = − ω0

k A2
c

〈 fnz〉 = − ω0

k A2
c

∫ 2π/ω0

0
fn[d + Ac

+ Ac cos(ω0t)]Ac cos(ω0t) dt (21)

where Ac is the set amplitude that the cantilever keeps during
operation, and d is the closest distance of the tip to the sample.

Equations (13), (18) and (21) describe the relations
of vibration amplitude, phase angle and frequency shift to
normal tip–sample interaction in AM-AFM and FM-AFM,
respectively. The vibration amplitude and frequency shift are
both dependent on the average work done by the interaction
force per period. The phase angle is related to the energy
dissipation due to the tip–sample interaction.

2.3. 1D beam model

The 1D beam model shown in figure 7 is used in dynamic
simulations of cantilever vertical bending in FMM and AFAM.
The vertical bending of a cantilever is governed by the
following ordinary differential equation (Gorman 1975):

E Iy
∂4w(x, t)

∂x4
+ ρ A

∂2w(x, t)

∂ t2
+ cvb

∂w(x, t)

∂ t
= 0 (22)

where w(x, t) is the cantilever transverse displacement, E is
the Young’s modulus, ρ is the mass density, A is the cross
section area, Iy is the moment of inertia about the y axis, cvb =
ωρ A/Q is the damping coefficient for the cantilever when it
is in vibrating in air, and ω is the natural frequencies of the
cantilever corresponding to vertical bending. For a cantilever
with a rectangular cross section, Iy = bh3/12, where b and h
are the width and thickness of the cross section, respectively.

It is assumed that the cantilever is a homogeneous,
isotropic, linear elastic beam with a uniform cross section. In
the modal analysis of free vibration, one seeks a solution as
w(x, t) = φw(x)eiωt , where i = √−1. The modal shape
function can be written as

φw(x) = C1e−avb x + C2eavb x + C3e−iavb x + C4eiavb x (23)

Figure 7. 1D beam model under linearized tip–sample interaction.
The cantilever is tilted to the sample surface by an angle α. kn, kt, ηn

and ηt are the contact stiffnesses and viscosities between the tip and
surface in normal and in-plane directions, respectively.

where a4
vb = ρ A

E Iy
ω2 − i cvb

E Iy
ω, C1, C2, C3 and C4 are

constants that can be determined by the following clamped–
free boundary conditions:

φw|x=0 = 0, φ′
w

∣
∣
x=0

= 0, E Iyφ
′′
w

∣
∣
x=L

= 0,

E Iyφ
′′′
w

∣
∣
x=L

= 0
(24)

where L is the length of the cantilever, and superscript ′
represents the first differential with respect to x .

By substituting equation (23) into the boundary conditions
and enforcing the condition that the eigenvalue avb must take
on values that ensure a nontrivial solution, a characteristic
equation can be obtained to determine the resonance
frequencies. For each resonance frequency, the corresponding
modal shape is determined by solving the constants in
equation (23) using (24). In the absence of damping, the
characteristic equation is

1 + cos(avbL) cosh(avbL) = 0. (25)

For a small oscillation around an equilibrium position, the
normal and in-plane interaction can be represented by a linear
spring and dashpot, as shown in figure 7. The modal analysis of
the cantilever under linearized tip–sample interaction follows
the same procedure as that for the cantilever without tip–
sample interaction. Under the assumption that the tip is located
at the end of the cantilever (λ = 1), the boundary conditions
with interaction are

φw|x=0 = 0, φ′
w

∣
∣
x=0

= 0, E Iyφ
′′
w

∣
∣
x=L

= Fxl,

E Iyφ
′′′
w

∣
∣
x=L

= −Fz

(26)
where l is the tip length, and Fx and Fz are the amplitudes of
the harmonic interaction forces along the x and z axes of the
cantilever. They are related to the amplitudes of the normal and
in-plane interaction forces Fn and Ft, which are proportional
to the amplitudes of the relative displacements between the tip
and surface in the normal and in-plane directions (�n and �t)

Fn = −(kn + iωηn)�n, Flat = −(klat + iωηlat)�t (27)

10
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Figure 8. Forced vibration amplitude of cantilever deflection (dashed
line) and rotation (solid line) compared with point-mass model
(dotted line). (a) No tip–sample interaction. (b) kn/k = 20, ηn is set
as a small value, kt = 0, ηt = 0 (Rabe et al 1998).

where �n and �t are obtained from the relative displacements
�x and �z

�n = −�x sin α + �z cos α,

�t = �x cos α + �z sin α
(28)

�x = lφ′
w

∣
∣
x=L

, �z = φw|x=L . (29)

Substituting equation (23) into equation (26), the characteristic
equation to determine the contact resonance frequency of
the cantilever under interaction can be obtained. Using
the boundary conditions to solve the four constants in
equation (23), modal shapes can be determined.

Forced vibration analysis can be carried out in a way
similar to the above procedure. The excitation could be from
the holder or from the sample surface. In both cases, the
steady-state response of the cantilever can be assumed as
w(x, t) = φw(x)ei�t . With appropriate boundary conditions
for each case, the cantilever response can be obtained. Figure 8
shows a comparison between the forced vibrations calculated
from the 1D beam model and point-mass model (Rabe et al
1998). The first three free resonance frequencies are marked by
the dashed vertical lines. Without tip–sample interaction, the
point-mass model predicts well the vibration amplitude and the
first resonance frequency. Due to the interaction, the spectral
positions of resonances shift to higher values. The amplitude
predicted by the point-mass model is orders of magnitude
smaller and the contact resonance frequency predicted for the
first mode is too high.

In AFAM, higher-order modes of the cantilever are excited
for surface stiffness imaging. The sensitivities of frequency
shift to variations in surface stiffness for each vibration mode
are different. Neglecting the tilting of the cantilever (α = 0)

Figure 9. Schematic diagrams of a tip–cantilever assembly in TR
mode. (a) The cantilever is excited into torsional vibration by the
holder. (b) The cantilever under a linear viscoelastic interaction.
(c) The tip is not located at the free end of the cantilever.

and contact damping, and assuming kt = 0, a characteristic
equation in the following form can be obtained:

�(avb, kn) = 0. (30)

The derivative of the characteristic equation with respect to kn

yields
∂avb

∂kn
= − ∂�/∂kn

∂�/∂avb
. (31)

The sensitivity of frequency shift to surface stiffness can be
obtained from

∂ω

∂kn
= ∂ω

∂avb

∂avb

∂kn
. (32)

With a 1D beam model, a sensitivity study of flexural contact
resonance frequency to normal surface stiffness can be carried
out, and it shows that the first flexural mode is the most
sensitive one for materials that are compliant relative to the
cantilever stiffness. The higher-order vibration modes may
be more sensitive than the first if the surface stiffness is high
enough (Turner and Wiehn 2001).

2.4. Pure torsional analysis of TR mode

Figure 9 shows the tip–cantilever assembly in TR mode. The
torsional vibration of the cantilever is governed by Gorman
(1975)

G J
∂2θ(x, t)

∂x2
= ρ Ip

∂2θ(x, t)

∂ t2
+ ctr

∂θ(x, t)

∂ t
(33)

where θ(x, t) is the rotation angle, G is the shear modulus,
ctr = ωρ Ip/Q is the coefficient of viscous damping
encountered by the cantilever when it is vibrating far away
from sample surfaces, J is the torsional constant, and Ip is
the polar area moment of inertia. For a cantilever with a

11
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rectangular cross section,

J ≈ 1

3
bh3

[

1.0 − 0.630
h

b
+ 0.052

(
h

b

)5
]

and Ip = 1
12 (hb3 + bh3).

The torsional resonance frequency is ω
√

1 − (1/2Q)2, where
ω is the resonance frequency in the absence of damping.
Usually, damping in the cantilever is quite small. It has very
little influence on the resonance frequencies of the system.
The modal analysis can be made on the basis of no damping.
Assuming a solution θ(x, t) = �(x)eiωt and substituting it
into the governing equation, one obtains

d2�(x)

dx2
+ β2

θ �(x) = 0 (34)

where β2
θ = ρ IP

G J ω2. The modal shape function is

�(x) = D1 sin(βθ x) + D2 cos(βθ x). (35)

Considering the clamped and free boundary conditions

�|x=0 = 0, G J�′∣∣
x=L

= 0 (36)

one can obtain the following characteristic equation:

cos(βθ L) = 0. (37)

The torsional mode shape for the cantilever is

�(x) = C0 sin(βθ x) (38)

where C0 is an arbitrary constant.
With tip–sample interaction, the location of the tip on

the cantilever becomes a factor affecting the dynamics of the
system. Figure 9(c) shows a tip–cantilever system in which the
tip is located away from the clamped end of the cantilever with
a distance of λL (0 < λ � 1). The cantilever is modeled
as two shafts with different twist angle functions, θ1(x1, t)
(0 � x1 � λL) and θ2(x2, t) (0 � x2 � (1 − λ)L). The
modal shape functions for the two shafts are

�1(x1) = D1 sin(βθ x1) + D2 cos(βθ x1) (39)

�2(x2) = D3 sin(βθ x2) + D4 cos(βθ x2) (40)

where the constants D1, D2, D3 and D4 can be determined
by two boundary conditions and two continuity conditions of
the two shafts. Considering a linear elastic interaction, the
characteristic equation to determine βθ is (Song and Bhushan
2006a)

(βθ L) cos(λβθ L) + sin(λβθ L){χk − (βθ L)

× tan[(1 − λ)βθ L]} = 0 (41)

where the dimensionless parameter χk = klatl2 L/(G J )

represents the relative stiffness ratio between tip–sample
interface and the cantilever. The mode shapes of the two shafts
are

�1(x1) = C0 sin(βθ x1) (42)

�2(x2) = C0 sin(βθλL){tan[βθ(1 − λ)L]
× sin(βθ x2) + cos(βθ x2)}. (43)

To establish the relation of torsional amplitude and phase angle
with in-plane surface properties, forced torsional vibration
analysis is needed. The holder vibrates harmonically with a
circular frequency � as gθ(t) = θgei�t. The solutions for
the two shafts are θ1(x1, t) = �1(x1)ei�t and θ2(x2, t) =
�2(x2)ei�t . Substitution of the solutions into the governing
equation leads to

d2�1(x1)

dx2
1

+ (η2
θ − iηc)�1(x1) = 0 (44)

d2�2(x2)

dx2
2

+ (η2
θ − iηc)�2(x2) = 0 (45)

where η2
θ = ρ IP

G J �2, ηc = ctr
G J �. The solutions of the above

equations are

�1(x1) = D1e−atr x1 + D2eatr x1 (46)

�2(x2) = D3e−atr x2 + D4eatr x2 (47)

in which atr =
√

−η2
θ + iηc. The four constants in

equations (46) and (47) can be determined by the following
boundary and continuity conditions:

�1|x1=0 = θg, G J�′
2

∣
∣
x2=(1−λ)L

= 0 (48)

�1|x1=λL = �2|x2=0 ,

G J �′
1

∣
∣
x1=λL

− G J �′
2

∣
∣
x2=0

= −(klat + iηlat�)l2 �2|x2=0 .

(49)
After obtaining the four constants D1, D2, D3 and D4, one can
calculate the torsion of the cantilever at the location of the tip
as

�1(x1 = λL) = �2(x2 = 0) = Hθ(�)θg (50)

where Hθ(�) is the frequency response function (FRF) of the
cantilever at the tip location (Song and Bhushan 2005).

The torsional magnitude and phase of the cantilever at the
tip location are

Aθ = |Hθ(�)|θg (51)

φ = Argument[Hθ(�)]. (52)

In dynamic AFM modes, phase shift is defined as the phase
difference between the driving signal and cantilever response,
which is −φ in this case. The phase shift −φ results from two
sources. One is the phase shift due to the viscous damping
encountered by the cantilever when it vibrates far away from
the sample surface (klat = 0 and ηlat = 0). It is denoted as
−φ0. The other is derived from the tip–sample interaction. If
klat = 0 and ηlat = 0, the FRF of the cantilever at the location
of the tip can be obtained as

H 0
θ (�) = eatrλL [e2atr(1−λ)L + 1]

(e2atr L + 1)
. (53)

The torsional magnitude and phase angle without interaction
are A0

θ = |H 0
θ (�)|θg and φ0 = Argument[H 0

θ (�)].
12
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Figure 10. Schematic diagram of the cantilever tip under lateral
tip–sample interaction. (a) The interaction is linear viscoelastic. A
lateral force flat and a torque Tlat = flatl are exerted on the cantilever.
(b) The cantilever is under the deflections of lateral bending (lateral
displacement v(x, t)) and torsion (twist angle θ(x, t)).

2.5. Coupled torsional–bending analysis of TR and LE modes

As shown in figure 10, in TR and LE mode, the lateral
force at the tip end causes the lateral bending and torsion of
the cantilever. The torsion of the cantilever is governed by
equation (33). The lateral bending is governed by the following
ordinary differential equations:

E Iz
∂4v(x, t)

∂x4
+ ρ A

∂2v(x, t)

∂ t2
+ clb

∂v(x, t)

∂ t
= 0 (54)

where v(x, t) is the lateral displacement along the y axis, Iz is
the moment of inertia about the z axis, and clb = ωlbρ A/Q
are the damping coefficients for the lateral bending when
the cantilever is vibrating in air. Here, ωlb is the resonance
frequency corresponding to lateral bending. For a cantilever
with a rectangular cross section, Iz = hb3/12.

In TR mode, assuming a harmonic motion of the holder
as gθ (t) = θgei�t, one has θ(x, t) = �(x)ei�t and
v(x, t) = φv(x)ei�t . Similarly, the lateral force and
the relative displacement can be represented as flat =
Flatei�tδlat = �latei�t . Substituting the solutions into the
governing equations for torsion and lateral bending, one has

d2�(x)

dx2
− a2

tr�(x) = 0 (55)

d4φv(x)

dx4
− a4

lbφv(x) = 0 (56)

where a2
tr = −ρ IP

G J �2 + i ctr
G J �, a4

lb = ρ A
E Iz

�2 − i clb
E Iz

�.
The determination of the response functions �(x) and φv(x)

requires two torsional-related and four lateral-bending-related
boundary conditions. As shown in figure 11(a), the amplitude
of relative displacement �lat = l�|x=L + φv|x=L . The six
boundary conditions are

�|x=0 = θg,

G J�′∣∣
x=L

= −(klat + iηlat�)(l �|x=L + φv |x=L ) l
(57)

φv|x=0 = 0, φ′
v

∣
∣
x=0

= 0, E Izφ
′′
v

∣
∣
x=L

= 0,

E Izφ
′′′
v

∣
∣
x=L

= (klat + iηlat�)(l �|x=L + φv |x=L ) .

(58)

Figure 11. (a) Schematic diagrams of a cantilever deflection in TR
mode. The cantilever is excited by the holder. (b) Schematic diagram
of a cantilever deflection in LE mode. The cantilever is excited to
vibrate by the harmonic oscillation of the sample surface through the
lateral tip–sample interaction.

The response functions �(x) and φv(x) can be obtained by
solving equations (55)–(58). The twist angle at the end of the
cantilever is (Song and Bhushan 2006c)

�c ≡ �(x = L)

= 2atreatr L G J

atr(e2atr L + 1)G J + (e2atr L − 1)l2(klat + iηlat�)γc
θg

(59)

in which

γc = a3
lb E Izπ1

a3
lb E Izπ1 + (1 + i)(klat + iηlat�)π2

(60)

π1 = 1 + e2ialb L + 4e(1+i)alb L + e2alb L + e2(1+i)alb L (61)

π2 = 1 − ie2ialb L + ie2alb L − e2(1+i)alb L . (62)

With the lateral bending being neglected, the cantilever would
be in pure torsion and the twist angle at the end of the cantilever
is

�p ≡ �(x = L)

= 2atreatr L G J

atr(e2atr L + 1)G J + (e2atr L − 1)l2(klat + iηlat�)
θg. (63)

Comparing �c with �p, we can see that �c equals �p only if
the coupling coefficient γc = 1. This means that the lateral
bending of the cantilever can be neglected if π1 → ∞, or
π2 → 0, or the tip–sample interaction is very weak (klat → 0
and ηlat → 0).

In LE mode, the sample surface is oscillating in a
harmonic motion expressed as g(t) = agei�t . Compared
to TR mode, in which the driving frequency has to be at or
close to the cantilever torsional resonance frequency, in LE
mode the driving frequency could be a value in a wide range.
It could be much lower than the torsional/lateral bending
resonance frequency of the cantilever, or very high around
the aforementioned resonance frequency. As in TR mode,
the cantilever undergoes a combination of torsion and lateral
bending governed by equations (33) and (54). By assuming
θ(x, t) = �(x)ei�t and v(x, t) = φv(x)ei�t , we have
equations (55) and (56) to obtain the response functions �(x)

and φv(x). As shown in figure 11(b), the relative displacement

13
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Table 3. Relations of cantilever responses and tip–sample interaction in TR and LE modes.

TR mode
(excitation from the holder)

LE mode
(excitation from the sample)

Twist angle Lateral displacement Twist angle Lateral displacement

Weak interaction Free amplitude Zero Zero Zero
Increasing interaction Decreasing Increasing Increasing Increasing
Strong interaction Zero Maximum Maximum Maximum

amplitude �lat = l�|x=L + φv|x=L − ag . The six boundary
conditions are

�|x=0 = 0,

G J�′∣∣
x=L

= −(klat + iηlat�)(l �|x=L + φv

∣
∣
x=L − ag) l

(64)
φv|x=0 = 0, φ′

v

∣
∣
x=0

= 0, E Izφ
′′
v

∣
∣
x=L

= 0,

E Izφ
′′′
v

∣
∣
x=L

= (klat + iηlat�)(l �|x=L + φv

∣
∣
x=L − ag) .

(65)
The twist angle at the end of the cantilever is (Song and
Bhushan 2006c)

�c ≡ �(x = L) = ag

l + at(e2at L +1)G J
(e2at L−1)(klat+iηlat�)l

1
γc

. (66)

The pure torsional analysis of LE mode can be obtained by
setting φv = 0 and the twist angle at the end of the cantilever
is

�p ≡ �(x = L) = ag

l + atr(e2atr L +1)G J
(e2atr L−1)(klat+iηlat�)l

. (67)

Comparing �c with �p, we can see that, as in TR mode, �c

equals �p only if the coupling coefficient γc = 1.
Due to the different excitation mechanisms, the cantilever

response shows different characteristics in TR and LE modes.
A detailed parameter analysis was performed by Song and
Bhushan (2006c) to investigate these differences and under
what conditions the pure torsional analysis is acceptable.
Table 3 summarizes the cantilever responses to different tip–
sample interactions in TR and LE modes.

In TR mode, excitation frequency is close to either
the torsional resonance frequency or the torsional contact
resonance frequency of the cantilever. In some cases of LE
mode, such as AFFM and lateral AFAM, excitation frequency
is around the cantilever torsional and lateral bending resonance
frequencies, while in others, such as LM-AFM, very low
frequency lateral force modulation is employed. Figure 12
(Song and Bhushan 2006c) shows the FRFs of torsional angles
�c and �p, in TR mode and in LE mode. The FRFs of the
torsional angle �c in TR and LE modes can be calculated from
equations (59) and (66) by setting the excitation amplitude
θg = 1 and ag = 1, respectively. The FRFs of �p can be
obtained in the same way using equations (63) and (67).

In figure 12(a), it is clear that with no interaction the
cantilever is in pure torsional vibration. With lateral tip–
sample interaction, lateral bending is coupled with the torsion
and the FRF resonances shift to the right. If a very low
excitation frequency is used in TR mode, torsional vibration
could hardly be excited. If the excitation frequency � is around

Figure 12. Frequency response functions of torsional angles �c and
�p, in TR mode (a) and in LE mode (b). Lateral viscosity ηlat is
neglected (Song and Bhushan 2006c).

the torsional resonance frequency ωtr, even a medium lateral
tip–sample interaction would result in a dramatic decrease in
torsional amplitude. Therefore, � = ωtr is only suitable for
measurement with relatively weak interaction. For medium
lateral interaction, one could choose an excitation frequency
that is close to the torsional contact resonance frequency so
that a significant torsional angle can be measured. However,
if the interaction is relatively strong, the cantilever has
approximately clamped–clamped boundary conditions. Even
at the torsional contact resonance, the torsional amplitude
will not be big enough. Generally, the torsional amplitude
corresponding to the lateral bending mode is rather small (see
the small peak around 970 kHz in figure 12(a)). This means
the contact resonance frequency of lateral bending may not be
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Figure 13. Torsional resonance curves of a cantilever measured on
fused silica with different amplitudes of excitations (Reinstädtler
et al 2005b).

Table 4. Summary of application conditions for TR and LE modes.

Driving frequency Applicable for

TR mode Free torsional resonance Weak interaction
Contact torsional resonance Weak or medium

interaction
LE mode Very low Strong interaction

Contact torsional resonance Any interaction
Contact resonance of
lateral bending

Medium or strong
interaction

used as the excitation frequency in TR mode. To sum up, TR
mode might only be used for measurement of sample surface
with relatively weak tip–sample interaction.

In figure 12(b), FRFs for LE mode are very different
from those for TR mode. In LE mode, lateral tip–sample
interaction always exists. As the interaction becomes stronger,
the FRF resonance amplitude increases. If the excitation
frequency is much lower than the torsional/lateral bending
resonance frequency, torsional vibration can be significant
only if the interaction is relatively strong, i.e., low frequency
LM-AFM may be used only under relatively strong lateral
tip–sample interaction. If the excitation frequency is around
the torsional and lateral bending resonance frequencies, the
torsional amplitude is increased. When the lateral interaction
is relatively small the torsional amplitude corresponding to the
lateral bending mode is quite small, but when the interaction
becomes stronger it increases rapidly to the same order as that
of the torsional mode. Therefore, for relatively weak tip–
sample interaction the excitation frequency should be around
the torsional resonance frequency, and for relatively strong tip–
sample interaction both torsional and lateral bending modes
may be excited for measurement. Table 4 summarizes the
application conditions for TR and LE modes.

In the above analyses for TR and LE modes, it is assumed
that there is no slip occurring between the tip and sample
surface during measurement, i.e., the lateral interaction force
does not exceed the critical friction force. This is the
condition that must be satisfied so that the linear viscoelastic
interaction model is valid. It is found that in TR and
LE modes, under a certain applied normal load, a critical
excitation amplitude, which indicates the onset of sliding

Figure 14. Schematic diagram of tip–cantilever system. The
cantilever is represented by 3D beam elements and the tip by a rigid
bar. The tip is not positioned perfectly on the central line of the
cantilever.

between the tip and sample, can be determined by observing
the shape of the resonance curves (Reinstädtler et al 2003).
Torsional resonance curves measured with different amplitudes
of excitation are shown in figure 13 (Reinstädtler et al 2003).
At low excitation amplitudes the shape of the resonance curve
is Lorentzian. With the increasing of excitation amplitude,
deviations from the Lorentzian shape appear. Above the
critical excitation amplitude, the resonance curve flattens out
and the frequency span of the flattened part increases with the
excitation amplitude. By choosing an excitation amplitude
smaller than the critical one, the non-slip condition can be
satisfied.

3. Finite element modeling of tip–cantilever systems

FE methods are powerful and versatile tools for dynamic
analysis of complex mechanical systems. A 3D FE beam
model of tip–cantilever systems was developed by (Song and
Bhushan 2006b) for simulation of the free and surface-coupled
dynamics of AFM cantilevers in various dynamic modes.
Representing the cantilever by 3D beam elements, this model
addresses all the complexities in cantilever dynamic modeling
arising from the excitation mechanism, tip geometry/location,
tilting of the cantilever to the sample surface, and the couplings
among the different deflections of AFM cantilevers.

3.1. Finite element beam model

The FE model of the tip–cantilever system is illustrated in
figure 14. The center of the tip bottom is positioned at point
A, whose coordinates are x = λL (0 < λ � 1), y = et,
and z = 0. The distance between the mass center of the tip
(point G) and point A is hG. The cantilever is discretized by 3D
beam elements, and the tip is modeled as a rigid bar. The tip–
sample interaction occurring at the end of the tip (point P) is
transferred to the cantilever through point C. For convenience,
point C shall be a node of two adjoining beam elements.

Figure 15 shows a 3D beam element. Note that the
local coordinate system of the beam elements employed
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Figure 15. Three-dimensional beam element. At each node of the
element, there are three translational and three rotational
displacements.

to discretize the cantilever is coincident with the global
coordinate system of the tip–cantilever assembly in figure 14.
At each node of a 3D beam element, there are six DOFs, three
translation displacements and three rotations. The element
nodal displacement vector is

de = { dx1, dy1, dz1, θx1, θy1, θz1 dx2, dy2,

dz2, θx2, θy2, θz2 }T . (68)

The corresponding element nodal force vector, consisting of
three shear forces and three moments at each node, is

fe = { Fx1, Fy1, Fz1, Mx1, My1, Mz1, Fx2, Fy2,

Fz2, Mx2, My2, Mz2 }T . (69)

The element stiffness matrix expresses the relation of element
nodal force vector fe with element nodal displacement vector
de. For a 3D beam element with a length of Le, the element
stiffness and mass matrices are represented by ke and me,
which are functions of geometry and material properties of the
beam element. If the mass and moments of inertia of the tip are
not negligible, the tip will contribute to the system mass matrix
through node C. The mass matrix of the tip is represented by
mt (Song and Bhushan 2006b).

The system mass and stiffness matrices M and K are
obtained by assembling the contributions from all the beam
elements and the tip. The system damping matrix C is usually
represented by a proportional damping matrix for simplicity
(Song and Bhushan 2006a, 2006b).

The FE motion equation for the tip–cantilever system is

Md̈ + Cḋ + Kd = Fext + Fts. (70)

Here, d, ḋ and d̈ are the system displacement, velocity and
acceleration vectors, respectively, Fext is the force vector due to
the external forces except that from the tip–sample interaction,
and Fts is the force vector due to the tip–sample interaction. Fts

is solely contributed by the forces and moments at node C as

Fts = GT
t fC

ts (71)

where Gt is the Kronecker matrix reflecting the position
information of the nodal displacements at node C in the
global displacement vector. As shown in figure 16, fC

ts =
{ f C

x , f C
y , f C

z , MC
x , MC

y , MC
z }T is the force vector at

node C, and the vector fαts = { ft, flat, fn }T contains the
interaction forces on the sample surface. The transformation
relation between fC

ts and fαts is given by

fC
ts = ACαfαts (72)

Figure 16. Force diagrams of tip–sample interaction. The cantilever
is tilted to the sample surface with an angle of α and the eccentricity
of the cantilever is considered. (a) 3D view. (b) View in the x–z
plane. (c) View in the y–z plane.

where

ACα =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

cos α 0 − sin α

0 1 0
sin α 0 cos α

et sin α l et cos α

−l cos α 0 l sin α

−et cos α 0 et sin α

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (73)

If linearized tip–sample interaction is considered, one can
rewrite the system motion equation (70) as

Md̈ + (C + Cts)ḋ + (K + Kts)d = Fext + GT
t fa

ts (74)

where fa
ts is the force vector due to the motion of the

sample surface, and Kts and Cts are the equivalent stiffness
and damping contributions due to the tip–sample interaction.
Equation (74) demonstrates that the linear viscoelastic tip–
sample interaction is equivalent to adding additional damping
and stiffness matrices to the original system.

The natural frequencies and modal shapes of the tip–
cantilever system without tip–sample interaction are obtained
by solving the generalized eigenvalue problems

KΦ = MΦΛ2 (75)

Λ2 = diag [ ω2
1, ω2

2, . . . , ω2
n ] (76)

Φ = [ ϕ1, ϕ2, . . . , ϕn ] (77)

where n is the total number of DOFs of the system, and ωi ,
ϕi and ςi (i = 1, 2, . . . , n) are the i th circular natural
frequency, eigenmode vector and damping ratio of the system.
The modal characteristics for a system under linear viscoelastic
tip–sample interaction can be determined by solving a similar
eigenvalue problem as

(K + Kts)Φc = MΦcΛ2
c (78)

Φc = [ ϕc1
ϕc2 . . . ϕcn ] (79)

Λ2
c = diag [ ω2

c1
ω2

c2
. . . ω2

cn
] (80)

where ωci and ϕci (i = 1, 2, . . . , n) are the i th circular
frequency and eigenvector of the system under tip–sample
interaction.
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Figure 17. Schematic diagram of a cantilever in TM. The cantilever
is driven to vibrate by the harmonic motion of its holder along the
z axis.

3.2. Modeling of tapping mode

In TM, the cantilever is driven to vibrate by the vertical
harmonic motion of its holder gz(t) = hgei�t , as shown in
figure 17. Except the interaction force, no external force exists
(Fext = 0). The sample surface is fixed (aα = 0). The total
dynamic displacement vector of the cantilever can be expressed
as

d(t) = u(t) + lz gz(t) (81)

where u(t) is the cantilever deflection relative to the moving
holder. The i th element of the positioning vector lz equals
unity if the i th DOF of d(t) corresponds to the translational
displacement in the z axis; otherwise, it equals zero. The
motion equation (70) can be rewritten as

Mü + Cu̇ + Ku = −Γz g̈z(t) + Fts(u, u̇) (82)

Γz = Mlz (83)

when the cantilever is vibrating far away from the surface
(Fts = 0), the vibration amplitude due to the excitation from
the holder can be determined from the FRF of the system.
Assuming u = Uei�t , one can obtain the FRF vector of the
cantilever due to the z direction motion of the holder from
equation (82)

Hz(�) = U
hg

= [K + i�C − �2M]−1Γz�
2. (84)

The i th element of Hz(�), Hzi(�) (i = 1, 2, . . . , n),
represents the response of the i th DOF of the system when
the holder is moving harmonically with a unit amplitude at
circular frequency �. If the total vertical displacement (dC

z )
and rotation about the y axis (θC

y ) at node C are the pth and qth
DOFs of the system, the free vibration amplitudes and phases
of dC

z and θC
y under the excitation hgei�t are the amplitudes

and arguments of the complex values of [Hzp(�) + 1]hg and
Hzq(�)hg , respectively. Note that the readout of the measuring
system of the AFM is the signal about θC

y .
Under linear tip–sample interaction, the dynamic response

of the tip–cantilever system can be obtained in the same way as
that used in the free vibration analysis except that the system
damping and stiffness matrices become C + Cts and K + Kts.
The surface-coupled FRF vector due to the z direction motion
of the holder can be expressed as (Song and Bhushan 2006b)

Hts
z (�) = U

hg
= [(K + Kts) + i�(C + Cts) − �2M]−1

× [Γz�
2 − i�Ctslz − Ktslz]. (85)

With nonlinear tip–sample interaction, the motion equa-
tion (82) governs the nonlinear dynamic response of the can-
tilever. The temporal response of the cantilever can be solved
using the Runge–Kutta algorithm. There might be couplings
among the vertical bending, lateral bending, extension, and tor-
sion of the cantilever. Equation (82) takes all the couplings,
if any, into consideration. Numerical simulations have shown
that in TM, compared with vertical displacement and rotation
about the y axis, the displacements/rotations related to the ex-
tension, torsion, and lateral bending of the cantilever are all
negligible (Song and Bhushan 2006b).

3.3. Modeling of TR and LE modes

In TR mode, the cantilever is excited by the torsional vibration
of its holder gθ(t) = θgei�t . Except the interaction force,
no external force exists (Fext = 0). The sample surface is
fixed (aα = 0). The total dynamic displacement vector of the
cantilever can be expressed as

d(t) = u(t) + lθ gθ(t) (86)

where u(t) is the cantilever deflection relative to the rotating
holder, and gθ(t) is the torsional motion of the holder. The i th
element of the positioning vector lθ equals unity if the i th DOF
of d(t) corresponds to the torsion about the x axis; otherwise,
it equals zero. The motion equation is

Mü + Cu̇ + Ku = −Γθ g̈θ(t) + Fts(u, u̇) (87)

Γθ = Mlθ . (88)

In free vibration (Fts = 0), the FRF vector due to the torsion of
the holder is Song and Bhushan (2006b)

Hθ (�) = U
θg

= [K + i�C − �2M]−1Γθ�
2. (89)

If θC
x is the mth DOF of the system, the total free vibration

amplitude and phase of θC
x under a harmonic motion of the

holder gθ (t) = θgei�t are the amplitude and argument of the
complex value of [Hθm(�) + 1]θg, respectively.

If the tip–sample separation (normal pressure) remains al-
most constant during measurement, the tip–sample interaction
can be modeled using a linear viscoelastic model. The FRF
vector due to the torsion of the holder under tip–sample inter-
action is (Song and Bhushan 2006b)

Hts
θ (�) = U

θg
= [(K + Kts) + i�(C + Cts) − �2M]−1

× [Γθ�
2 − i�Ctslθ − Ktslθ ]. (90)

The temporal response of the cantilever can be obtained
by solving the motion equation (87) using the Runge–Kutta
algorithm. The deflection of the cantilever in TR mode is a
combination of torsion and lateral bending. If tip eccentricity
exists (et = 0), the twist of the cantilever will change the tip–
sample distance and consequently the normal interaction force.
In this case, the vertical bending and extension will be coupled
with the torsion/lateral bending of the cantilever. However, in
TR mode, the deflections of the cantilever corresponding to the
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vertical bending and extension are small and can be ignored
(Song and Bhushan 2006b).

In LE mode, the cantilever is excited to vibrate by the
harmonic motion of the sample surface (aα = 0) through the
lateral tip–sample interaction. The driving frequency could be
a value in a wide range around the resonance frequencies of
torsion or lateral bending. Except the interaction force, no
external force exists (Fext = 0). The system motion equation
of the LE mode is

Md̈ + Cḋ + Kd = Fts(d, ḋ). (91)

The motion of the sample surface is

aα = { at, alat, an }T = { 0, agei�t , 0 }T . (92)

If the tip–sample separation (normal pressure) remains almost
constant during the measurement, tip–sample interaction can
be modeled using a linear viscoelastic model. The motion
equation of (91) can then be expressed as

Md̈ + (C + Cts)ḋ + (K + Kts)d = GT
t fa

ts (93)

fa
ts = ACα(kα

tsa
α + cα

tsȧ
α) (94)

kα
ts =

[ kt 0 0
0 klat 0
0 0 kn

]

, cα
ts =

[ ct 0 0
0 clat 0
0 0 cn

]

. (95)

By substituting equations (92) and (94) into (93) and assuming
d = Uei�t , one can rewrite the motion equation as

[−�2M + i�(C + Cts) + (K + Kts)]U = Γlatag (96)

Γlat = GT
t ACα

(

kα
ts

{ 0
1
0

}

+ cα
ts

{ 0
i�
0

})

= GT
t

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0
klat + i�clat

0
l(klat + i�clat)

0
0

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (97)

The FRF vector due to the motion of the sample in LE mode is
(Song and Bhushan 2006b)

Hlat(�) = U
ag

= [(K+Kts)+i�(C+Cts)−�2M]−1Γlat. (98)

The readout of the AFM measuring system is the signal about
θC

x . If θC
x is the mth DOF of the system, the total free vibration

amplitude and phase of θC
x under a harmonic motion of the

holder alat(t) = agei�t are the amplitude and argument of the
complex value of Hlat m(�)ag, respectively.

The coupling relations in LE mode are the same as these
in TR mode. The response of the cantilever, equation (93), can
be solved using the Runge–Kutta algorithm.

Figure 18. Stick–slip tip motion obtained in atomic-scale friction
measurement. The experiment was conducted on a freshly cleaved
HOPG sample using a silicon nitride cantilever with a sharp tip
(Ruan and Bhushan 1994).

4. Applications of FE model in AFM mode
simulations

4.1. FFM profiling process simulation

FFM is usually categorized as one of the static AFM modes
because during measurement the cantilever is not excited to
vibrate, and under certain conditions the cantilever is indeed in
the quasi-static motion. Nevertheless, stick–slip tip motion is
often observed in friction measurement, as shown in figure 18
(Ruan and Bhushan 1994). In that case, cantilever dynamics
is closely correlated to the measured topographic and friction
images and has to be considered.

4.1.1. Cantilever deflection in FFM. The working
mechanism of an optical beam-deflection FFM can be
explained in figure 1. FFM allows simultaneous measurements
of surface topography, normal and lateral forces. The four-
segment photo-diode is used to measure the cantilever flexural
angle θC

y and twist angle θC
x . Refer to figure 16; with tip

eccentricity and the tilting of the cantilever to the sample
surface being neglected, the vertical bending is solely caused
by the normal force fz and the moment MC

y = − fx l resulting
from the lateral force fx . The lateral force fy causes the lateral
bending, and its resulting torque fyl twists the cantilever.
Extension occurs due to the lateral force fx , but usually it is
very small and thus can be neglected. For a typical cantilever,
the extension stiffness is four to five orders of magnitude higher
than that of vertical bending.

θC
y is the flexural angle of the cantilever due to vertical

bending. It is related to the normal load fz and lateral force fx .
However, the contribution from fx to θC

y is much smaller than
that from fz , and therefore, normal load fz can be viewed as the
sole cause of θC

y (Song and Bhushan 2006d). With the help of a
feedback loop in FFM, surface topography (or constant normal
force profile) can be obtained by keeping a constant θC

y through
the z-direction motion of the piezotube when the cantilever tip
is scanned over the sample surface. Since the lateral force fy is
the only interaction force that is responsible for the cantilever
torsion, the twist angle θC

x is a good measurement for fy .
In the constant-force mode of FFM, a constant normal

load (or, equivalently, a constant θC
y ) is maintained to make
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Figure 19. Schematic view of the periodic hexagonal lattice structure
of (0001) graphite surface. Layers of the hexagonal structures are
staggered with a distance of 0.3354 nm. Two types of atoms are
distinguished. Hollow sites are the centers of each hexagon. In the
coordinate system for the cantilever, the x axis is along the cantilever
longitudinal direction. The cantilever is always scanned along the y
axis in constant-force mode of FFM. Another coordinate system
(x ′, y′) is introduced for convenient determination of atom locations
on the graphite surface. The shown parallelogram is a primitive unit
cell which includes two carbon atoms. Vectors a1 and a2 are the unit
lattice vectors for the primitive unit cell. The angle β is defined to
represent the relation between the coordinate systems for the
cantilever and graphite lattice structure.

the measured results meaningful. During the measurement,
the (fast) scan direction is perpendicular to the longitudinal
direction of the cantilever (along the y axis), and the lateral
force fy is obtained by measuring the twist angle θC

x . During
measurement, the tip is always in a stable equilibrium state in
the vertical direction if the holder is moving with a moderate
scan speed. In this case, the vertical displacement and flexural
angle can be obtained by

dC
z = constant = L3

3E Iy
fz + L2l

2E Iy
fx (99)

θC
y = constant = − L2

2E Iy
fz − Ll

E Iy
fx . (100)

With the contribution of fx being neglected, we have dC
z ≈

L3

3E Iy
fz and θC

y ≈ − L2

2E Iy
fz . Therefore, the topography map

obtained in FFM, zt(xt, yt), can be obtained by solving the
nonlinear equation

fz(xt, yt, zt) = W (101)

Figure 20. AFM topography images of graphite surface.
(a) Topography image of graphite obtained with a cantilever without
a tip (Binning et al 1987). Hexagonal structure of the graphite
surface is shown. (b) Topography map of HOPG showing atomic
resolution of every other atom (Ruan and Bhushan 1994).

where (xt, yt, zt) are coordinates of the cantilever tip and W is
the applied normal load.

4.1.2. FFM images of graphite surface. Atomic-scale
topographic imaging has been carried out by researchers on
HOPG and other samples. Figure 19 shows the hexagonal
structure of a (0001) graphite surface. Layers of the hexagonal
structures are staggered with a distance of 0.3354 nm. Two
types of carbon atoms, A type and B type, exist due to the
way the layers are staggered. A-type atoms have a direct
neighbor in the adjacent layers while B-type atoms do not.
Within one layer, the distance between the adjacent A-type or
B-type atoms is 0.2460 nm, and it is 0.1415 nm between any
two adjacent carbon atoms. Binning et al (1987) successfully
observed the hexagonal structure of a graphite surface (see
figure 20(a)). In their experiment, a cantilever without a tip
was scanned over the graphite surface with its corner touching
the surface to obtain the topographic images. Marti et al
(1987) also obtained the full hexagonal topographic image of
a graphite surface covered with paraffin oil using a diamond
epoxied to one of the four cross-points of four platinum wires.
However, many others (Albrecht and Quate 1987, Ruan and
Bhushan 1994) could only show the trigonal lattice of three
peaks with a distance of about 0.246 nm in their experimentally
obtained topographic images, i.e., so called ‘atomic resolution
of every other atom’ (see figure 20(b)).

FFM topographic and friction images are closely
correlated to the cantilever dynamics. The friction force map
measured in FFM is actually the map about the cantilever
torsional angle θC

x and the topographic map is about the z-
direction holder motion zh. In the measured maps of FFM,
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the topography and lateral forces at the locations of the tip
(xt(t), yt(t)) are plotted against the ‘nominal’ coordinates
of the tip, i.e. the tip position at time t if the cantilever
is rigid (no deflection). The ‘nominal’ tip coordinates are
determined from the coordinate of the cantilever holder. Here,
we represent them as (xh(t) + Lh, yh(t)), where (xh(t), yh(t))
are coordinates of the holder and Lh is a constant in
each experiment. Due to the cantilever deflection during
measurements, usually one will find that the ‘nominal’ tip
coordinates (xh(t) + Lh, yh(t)) are different from the real tip
coordinates (xt(t), yt(t)). This means that cantilever dynamics
have to be considered in order to explain the aforementioned
different experimentally obtained topography of graphite.

4.1.3. Modeling of FFM profiling process. The interaction
forces between the scanning cantilever tip and the graphite
surface can be calculated from the spatial derivatives of an
interaction potential between the atoms of the tip and graphite
surface. The periodic structure of the graphite surface induces
a periodic interaction potential in the form of

Vts(rt) = Vts(rt + i1a1 + i2a2) (102)

where rt is the tip position vector, a1 and a2 are the unit lattice
vectors in the surface plane (refer to figure 19), and i1 and
i2 are arbitrary integers. It is assumed that the interaction
potential between the tip and graphite surface equals the sum
of the interaction potential between individual tip atoms and
carbon atoms of the graphite surface. In the (x, y, z) coordinate
system of the cantilever, the tip position vector is denoted as
rt = (xt, yt, zt).

Using the 3D finite element beam model described
in section 3, the motion equation governing the cantilever
response is expressed as

Mü + Cu̇ + Ku = Fts − MΓg̈h. (103)

Here, u, u̇ and ü are displacement, velocity and acceleration
vectors of the cantilever relative to its holder, gh =
{xh, yh, zh}T is the vector of holder motion, and Γ is the
position matrix to describe the relation between the total
displacement vector utol and u. The total displacement vector
of the cantilever in the (x, y, z) coordinate system is expressed
as

utol = u + Γgh. (104)

For easy illustration, it is assumed that the tip is at the end
of the cantilever, and the cantilever is represented by only one
beam element. There are six DOFs at the end of the cantilever:
dC

x , dC
y , dC

z , θC
x , θC

y , and θC
z . The extension of the cantilever can

be neglected, i.e., dC
x = 0.

The cantilever deflections corresponding to lateral
bending (dC

y and θC
z ) and torsion (θC

x ) are governed by
equation (103). The cantilever is scanned with a constant
velocity, i.e., g̈h = {0, 0, 0}T. Equation (103) is expressed as
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The force and moment at point C are related to fy as
⎧
⎪⎨
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=
{ 1

l
0

}

fy(xt, yt, zt). (106)

The lateral force fy is a function of the tip location, which
can be determined from the constant-force condition in
equation (101) and the cantilever deflection as follows:

xt = xh + L − lθC
y , yt = yh + dC

y + lθC
x . (107)

In equation (107), −lθC
y ≈ L2l

2E Iy
fz = constant, i.e., along each

scan line xt =constant. Equation (105) is nonlinear and needs
to be solved numerically with equation (101) to simulate the
cantilever response in FFM. The resulting maps of zt and θC

x
are the FFM imaging results of topographic and friction force,
respectively.

The damping matrix in equation (105) addresses the
energy dissipation mechanism in the tip–cantilever–surface
system. It includes both the material damping in the cantilever
and the energy dissipation induced from the tip–sample
interaction, such as phonon generation. It is demonstrated
in section 3 that the damping effects due to the tip–sample
interaction can be equivalently addressed as an additional
damping term to the material damping matrix of the cantilever.
Here, the damping matrix is calculated as

C = [ϕ1,ϕ2,φ3]−Tdiag(2ς1ω1, 2ς2ω2, 2ς3ω3)[ϕ1,ϕ2,ϕ3]−1

(108)
where ωi , ϕi and ςi (i = 1, 2, 3) are the i th circular natural
frequency, normalized eigenmode vector and damping ratio of
the system. Large damping ratios (close to 1.0) are adopted to
simulate the damping effects in the profiling process of FFM.

4.1.4. Simulations on graphite surface. The FFM profiling
process was simulated by Song and Bhushan (2006d) for
different combinations of normal loads, tip lengths, and scan
directions. Figure 21 shows the simulated maps of cantilever
twist angle −θC

x , the tip-distance map zt, and the paths of
the cantilever tip. The maps of −θC

x can be viewed as a
measurement of the lateral force that resists the movement of
the cantilever, i.e., the lateral force whose direction is opposite
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to the scan direction. The rectangular silicon cantilever
considered here has the following dimensional and material
parameters: L = 252 μm, b = 35 μm, h = 2.3 μm,
ρ = 2330 kg m−3, E = 1.3 × 1011 Pa, υ = 0.28.

A. Slow–fast motion pattern. In figure 21(a), the results are
for the normal load W = 10 nN, tip length l = 12.5 μm,
and β = 0◦. The full hexagonal structure of the graphite
surface can be seen in the topographic map. The paths of
the cantilever tip are plotted by dots separated by equal time
intervals. Although the cantilever holder moves with a constant
velocity, the cantilever tip does not slide over the surface
smoothly. The dense part on the tip paths indicates that the
tip is moving slowly over the surface while the sparse part
represents a faster motion. This ‘slow–fast’ motion of the
cantilever tip is slightly different from what is well known
as the ‘stick–slip’ behavior since ‘stick’ means that there is
absolutely no relative motion between the cantilever tip and
sample surface. However, as the dense and sparse parts become
remarkable, the ‘slow–fast’ motion pattern is referred to as
‘stick–slip.’ Figure 21(b) gives the results under the same
conditions as those in figure 21(a), except that the normal load
is increased from 10 to 25 nN. The slow–fast tip motion in
figure 21(b) is more remarkable than that in figure 21(a) due
to the increased normal load. Consequently, the hexagonal
structure in topography cannot be observed in figure 21(b) and
only the ‘resolution of every other atom’ is shown. Also, a
dramatic difference can be seen in the lateral force maps in
figures 21(a) and (b).

B. Conditions for stick–slip occurrence. One would ask under
what circumstances the stick–slip (or remarkable slow–fast)
tip motion will not occur so that the detection of the full
atomic structure becomes possible. It is generally recognized
that stick–slip will occur if a soft cantilever is scanned over a
surface with large lateral forces (Mate et al 1987, Sasaki et al
1996, Hölscher et al 1997). Experimentally, it is also observed
that the sticking domain decreased with decreasing normal
load, and under lower normal load the tip shows smoother
motion (Fujisawa et al 1998). Johnson and Woodhouse (1998)
assumed a sinusoidal lateral force and gave the analytical
condition under which the tip motion is steady and no stick–
slip occurs,

T ∗ < T ∗
c = λlce/2π (109)

where T ∗ is the magnitude of the sinusoidal lateral force, T ∗
c

is the critical lateral force magnitude at which stick–slip will
occur, λl is the periodic lattice spacing of the sample surface,
and ce is the effective lateral stiffness. Although equation (109)
is obtained under the assumption of a sinusoidal lateral force, it
may be used for a rough estimation of the occurrence of stick–
slip in the simulations. For a rigid surface, ce equals the static
lateral stiffness of the cantilever, i.e.,

ce =
(

L3

3E Iz
+ Ll2

G J

)−1

. (110)

For the cantilever in figures 21(a) and (b), ce = 94.4 N m−1.
If it is chosen as λl = 0.426 nm, the critical lateral force

Table 5. Conditions for stick–slip occurrence.

Applied load

Cantilever
lateral
stiffness Cantilever geometry

Stick–slip Large Small Smaller width, smaller
thickness, larger
length, larger tip
length

No stick–slip Small Large Larger width, larger
thickness, smaller
length, smaller
tip length

magnitude is T ∗
c = 6.4 nN. The maximum lateral force is

about 3 nN for W = 10.0 nN and about 10 nN for W =
25.0 nN. According to the condition in equation (110), stick–
slip should happen in figure 21(b) but not in figure 21(a), which
is consistent with the simulated results.

C. Methods for stick–slip prevention. To observe the full
atomic structure of the surface, the velocity of the cantilever
tip should not oscillate too much during the scanning process.
As pointed out earlier, this usually requires a relatively small
lateral force and a large lateral stiffness of the cantilever. With
the same normal load as that in figure 21(b), figure 21(c)
shows the results with a smaller tip length l = 2.5 μm. As
expected, the slow–fast tip motion in figure 21(c) becomes less
remarkable than that in figure 21(b), and the full hexagonal
lattice structure is shown in the topographic map although
the normal load is the same as that in figure 21(b). With
a tip length of 2.5 μm, ce = 194.1 N m−1, and the
critical lateral force magnitude T ∗

c = 13.2 nN. According
to equation (109), the stick–slip motion should not occur.
Actually, this was exactly what Binning et al (1987) did in
their experiment where the full atomic structure was obtained
successfully. In their experiment, a cantilever without a tip
was used. During measurement, the cantilever corner touched
the sample surface for imaging. In the other experiment by
Marti et al (1987), in which the full hexagonal structure of
graphite surface was observed, a totally different detecting–
sensing design was employed. The lateral stiffness of the wires
they used is about 8 × 104 N m−1, which is much stiffer than
the commercially available cantilevers, whose lateral stiffness
is typically 10–500 N m−1. Table 5 summarizes the conditions
for stick–slip occurrence.

D. Image patterns due to different scan directions. In
figure 21(d), the results are for the normal load W = 25 nN,
tip length l = 12.5 μm, and β = 30◦. Compared with
figure 21(b), the effects of scan direction on topographic and
lateral force maps can be seen. Different patterns of tip paths
are also shown. The differences of figures 21(b) and (d) can be
explained by the different distributions of atom locations. The
peaks of topography for β = 0◦ appear at the place where
the tip is scanned between two closely placed atoms (Song
and Bhushan 2006d). When β = 30◦, two different areas
can be distinguished. In area A, there is no carbon atom in
the way of the scanned tip, resulting in a stripe-like dark area.
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Figure 21. The simulated maps of cantilever twist angle −θC
x (left-hand column), tip–surface distance (middle column) zt, and 13 paths of the

cantilever tip (right-hand column) for different combinations of the normal loads, tip lengths, and scan directions. The maps of cantilever twist
angle are equivalent to the lateral force maps. The tip–surface distance maps are equivalent to the topographic maps. The data on the maps are
unit-cell averaged. The paths of the tip is ‘time resolved’, i.e., the paths are plotted by dots separated by equal time intervals �t = 0.05 ms.
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Table 6. Relations of scan direction and characteristics of
topographic maps of graphite, when stick–slip tip motion occurs or
does not occur.

Scan angle β

Close to
0◦ (or 60◦) Close to 30◦

Between 0◦ and 30◦,
or between 30◦ and 60◦

Stick–slip Trigonal
structure

Stripe-like
structure

Between trigonal and
stripe-like structure

No stick–slip Hexagonal
structure

Hexagonal
structure

Hexagonal structure

Area B is the narrow stripe where the atoms are located. Due
to the unsmooth motion of the tip, the topography in this area
is ‘averaged’ and thus a stripe-like bright area is shown.

Figure 21(e) shows the results for the normal load W =
25 nN, tip length l = 12.5 μm, and β = 10◦. The simulated
topographic map is very similar to some of the scanning
tunneling microscopy (STM) experimental results (Mizes et al
1987). Compared with figures 21(b) (trigonal topography)
and 21(d) (stripe-like topography), figure 21(e) can be viewed
as something between the two. The scan directions of β = 0◦
and 30◦ are two extreme cases regarding the atom location
distribution. Any scan direction in the range of (0◦, 30◦) and
(30◦, 60◦) should result in lateral force and topography images
that are something between the results for β = 0◦ and 30◦. The
closer β is to 0◦ or 60◦, the more the images are similar to those
in figure 21(b). While β is close to 30◦, the resulting images
should look more like those shown in figure 21(d). Table 6
summarizes the relations of scan direction and characteristics
of topographic maps of graphite, when stick–slip tip motion
occurs or does not occur.

4.2. Vibration analysis of AFM tapping mode in liquid

Investigation of morphology and mechanical properties of
biological specimens using AFM often requires its operation
in a liquid environment. Due to hydrodynamic force, the
vibration of AFM cantilevers in liquid shows dramatically
different dynamic characteristics from that in air. A good
understanding of the dynamics of AFM cantilevers vibrating
in liquid is needed for interpretation of scanning images and
selection of AFM operating conditions.

4.2.1. Experiment measurement. In biology, operating
AFM in liquid allows the investigation of morphology and
mechanical properties of biological samples in their native
solutions. Other advantages include the elimination of
capillary forces (Drake et al 1989), reduction of van der
Waals forces by tenfold or more (Goodman and Garcia 1991),
and reduced tip and sample contamination (Hansma et al
1994). Pioneering images of biological samples in liquid were
acquired using contact mode AFM (Drake et al 1989, Hansma
et al 1992). In contact mode AFM, the cantilever tip is in
constant contact with the surface, and the resulting lateral
force could be destructive to soft samples. TM in liquid was
first implemented by Putman et al (1994). They successfully
measured the frequency responses and tip–sample approach

Figure 22. Experimental measurements of AFM cantilever responses
in air and liquid (Putman et al 1994). (a) Amplitude of cantilever
vertical displacement as a function of the driving frequency in air and
liquid. (b) Cantilever vertical displacement as a function of
tip–sample separation in air while the cantilever is driven to oscillate
at 52 kHz. (c) Cantilever vertical displacement as a function of
tip–sample separation in liquid while the cantilever is driven to
oscillate at 14.1 kHz. The figures on the left and right are the same
but demonstrated in different scales. The cantilever vertical
displacements here were calibrated from the cantilever rotation
angles measured by the AFM detecting system (Song and Bhushan
2007).

curves of V-shaped silicon nitride cantilevers in both air and
liquid. It is worthwhile to mention that Hansma et al (1994)
also made ‘tapping mode’ measurements on biological samples
in liquid with a different design. In their implementation, it
is the sample surface that oscillates up and down to tap the
cantilever tip.

The TM frequency responses and tip–sample approach
curves in both air and liquid obtained by Putman et al (1994)
are shown in figure 22. Figure 22(a) shows the cantilever
vibration amplitudes as functions of driving frequency. Due
to the additional mass and damping exerted on the cantilever
from the surrounding liquid, the resonances are shifted to the
left, and the vibration amplitudes are quenched.

Figures 22(b) and (c) give the cantilever vertical
displacements as functions of tip–sample separation in air and
liquid, respectively. During the measurements, the cantilever
was under constant vibrational excitation near resonance
frequencies, and it was brought towards the sample surface
with a constant velocity. In air (figure 22(b)), three regimes
can be observed in the cantilever response. Left to point
A, the cantilever oscillates away from the sample surface
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Figure 23. Schematic diagrams of a tip–cantilever system tilted to
the sample surface with an angle of α (a), and tip–sample
interaction (b) (Song and Bhushan 2007).

with a constant amplitude. From point A, the cantilever
tip begins to tap the surface. Between points A and B,
the vibration amplitude decreases linearly as the cantilever
approaches towards the surface. Beyond point B, the tip does
not have sufficient energy to overcome the adhesion force and
is continuously in contact with the surface.

In liquid (figure 22(c)), before the tip touches the surface,
the cantilever vibrates at a constant amplitude. After a tap
occurs at point A, the cantilever response shows different
characteristics than that in air. Between points A and B, the
bottom envelope of the cantilever oscillation decreases as the
cantilever approaches the surface but the upper envelope of the
oscillation hardly changes, showing an unsymmetric amplitude
change in the tapping region. In addition, the bottom envelope
of the oscillation does not change linearly. From point B
on, the tip is permanently in contact with the sample surface.
The cantilever is actually rotating with the tip as the pivot
point on the surface. The rotation angle (about the y axis)
oscillates with a constant amplitude but its mean shifts upwards
with the same velocity as that of the cantilever approaching
the surface. The right figure in figure 22(c) demonstrates
the transition from free cantilever movement to the pivoting
movement during the permanent contact. We note that in AFM
cantilever vertical displacements are calculated by calibrating
the measured rotation angles of the cantilever. This is why
in figure 22(c), although the cantilever tip is actually stuck on
the surface, it seems that the cantilever still has an oscillating
vertical deflection.

4.2.2. Tapping mode modeling in liquid. Modeling of
cantilever vibration in TM operated in liquid is a more
difficult task than that in air. In a liquid environment, the
cantilever behavior is dominated by the large hydrodynamic

damping and the additional mass from the liquid. Chen et al
(1995, 1996) studied the frequency and transient responses
of AFM cantilevers immersed in liquid by representing the
cantilevers as spheres oscillating in viscous liquid. Also
using a point-mass model, Burnham et al (1997) obtained
the tip–sample approach curves. Their results in air agree
well with the experimental ones. Sader (1998) gave a
general theoretical model for frequency response analysis of
a cantilever immersed in viscous liquid. This model is valid
for beams vibrating with small amplitudes and whose lengths
are much larger than their widths. Rankl et al (2004) studied
the frequency response of AFM cantilevers close to the sample
surface. In their model, the hydrodynamic damping due to the
fluid squeezed in and out of the region between the cantilever
and sample surface is considered.

Song and Bhushan (2007) used the FE beam model
introduced in section 3 to simulate cantilever dynamics in TM
operated in liquid. The FE motion equation of a cantilever
operated in tapping mode and immersed in liquid is

Mü + Cu̇ + Ku = Fts − Mlz g̈z(t) − Fd. (111)

Compared with the cantilever motion equation in air
(equation (82)), equation (111) includes a hydrodynamic force
vector Fd. The additional force vector Fd can be approximately
expressed as

Fd = −Mad̈ − Caḋ = −Ma[ü + lz g̈z(t)] − Ca[u̇ + lz ġz(t)].
(112)

Then equation (111) can be rewritten as

(M + Ma)ü + (C + Ca)u̇ + Ku

= Fts − (M + Ma)lz g̈z(t) − Calz ġz(t) (113)

where Ma and Ca are the additional mass and hydrodynamic
damping matrices due to hydrodynamic effects. They can
be obtained by assembling the additional element mass and
hydrodynamic damping matrices as

Ma =
cantilever∑

e

me
a (114)

Ca = C∞ + Cs =
cantilever∑

e

(ce
∞ + ce

s). (115)

Here, me
a is the additional element mass matrix, ce∞ is the

additional element damping matrix when the beam is in free
liquid, and ce

s is the additional element damping matrix due
to the fluid squeezed in and out of the region between the
cantilever and sample surface. They are obtained by

me
a =

∫ Le

0
ρa ANTN dx (116)

ce
∞ =

∫ Le

0
c∞NTN dx (117)

ce
s =

∫ Le

0

ηb3

h(x)3
NTN dx (118)

where N is the shape function vector for beam elements, ρa is
the additional mass density, c∞ is the hydrodynamic damping
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when the cantilever is vibrating in free liquid, and cs is the
hydrodynamic damping due to the fluid squeezed in and out of
the region between the cantilever and sample surface.

The additional mass density ρa can be calculated by
(Rankl et al 2004)

ρa = 0.6ρliqL1/2b3/2 (119)

where ρliq is the mass density of the liquid in which the
cantilever is immersed.

By representing an AFM cantilever as a string of beads,
Hosaka et al (1995) expressed c∞ and cs by

c∞ = 3πη + 3
4πb

√
2ρliqηω (120)

cs = ηb3

h(x, t)3
(121)

in which η is the viscosity of the liquid, ω is the vibrating
circular frequency of the cantilever, and h(x, t) is the transient
distance between the cantilever and surface. Refer to figure 23;
we have

h(x, t) = D + l cos α + (L − x) sin α + w(x, t) cos α. (122)

4.2.3. Simulations and results. TM frequency and transient
response analyses in liquid can be obtained by solving
equation (113) (Song and Bhushan 2007). Figure 24 shows
the simulated time histories of an AFM cantilever’s vertical
displacement and rotation in air as the tip–sample separation
decreases with a constant velocity of 4.37 × 10−4 m s−1 from
the initial separation of 210 nm. The driving frequency is at
the first resonance frequency of the cantilever (43.7 kHz), and
the excitation amplitude is hg = 3.84 nm. As we mentioned
earlier, the AFM detecting system actually measures the
cantilever rotation angle instead of the vertical displacement.
Therefore, it is the time history of rotation −θC

y (figure 24(b))
that is directly comparable to the tip–sample approach curves
shown in figure 22(b). Figure 24 clearly shows that before
the tip taps on the surface (point A) the cantilever oscillates
at constant amplitude. Between points A and B, cantilever
amplitude decreases linearly as the tip approaches close to
the surface. From point B on, the tip stays on the surface
due to large adhesion (refer to figure 24(a)) but there is
still some visible rotational oscillation (refer to figure 24(b)).
Figure 24(b) demonstrates exactly the same characteristics as
the measured result in figure 22(b).

The simulated time histories of dC
z and −θC

y in liquid are
shown in figure 25. In the simulation, the driving frequency
is 33.0 kHz and the excitation amplitude is hg = 11.7 nm.
The tip–sample separation is initially 20 nm and then decreases
with a constant velocity of 3.3 × 10−5 m s−1. Figure 25(b)
agrees very well with the experimental measurement in
figure 22(c). Left to point A, the cantilever vibrates at
a constant amplitude. After point A, the tip taps on the
surface. Between point A and B, as the tip–sample separation
gets smaller, the bottom envelope of the oscillation decreases
(not quite linearly) but the upper envelope remains almost
unchanged. After point B, the vibration amplitude again

Figure 24. Simulated time histories of cantilever vertical
displacement dC

z (a) and rotation −θC
y (b) in air. The driving

frequency is 43.7 kHz and the excitation amplitude is hg = 3.84 nm.
The tip–sample separation is initially 210 nm and then decreases
with a constant velocity of 4.37 × 10−4 m s−1. The Hamaker
constant is H = 7.4 × 10−18 J (Song and Bhushan 2007).

becomes constant. The pivoting motion of the cantilever when
the tip is in contact with the surface is clearly shown in the
lower part of figure 25(b). From figure 25(a), we can see that
the cantilever tip does not stick to the surface until the sample
surface is at the upper envelope of the oscillation. This is
different from the observation in air. In air, with large adhesion,
the tip sticks to the surface at a nonzero equilibrium tip–sample
separation. This different behavior is due to the small adhesion
force in liquid, and most importantly the hydrodynamic force
that resists the cantilever to get close to the surface.

5. Quantitative evaluation of sample’s mechanical
properties

One very desirable application of AFM is to quantitatively
evaluate a sample’s mechanical properties. In dynamic
modes, cantilever dynamic characteristics, including contact
resonance frequency, vibration amplitude and phase angle, are
related to the tip–sample interactions, which are functions of
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Figure 25. Simulated time histories of cantilever vertical
displacement dC

z (a) and rotation −θC
y (b) in liquid. The driving

frequency is 33.0 kHz and the excitation amplitude is hg = 11.7 nm.
The tip–sample separation is initially 20 nm and then decreases with
a constant velocity of 3.3 × 10−5 m s−1. The Hamaker constant is
H = 2.96 × 10−20 J (Song and Bhushan 2007).

the sample’s material properties. Therefore, it is possible
to evaluate a sample’s material properties by measuring
the cantilever’s dynamic parameters during operation if
the relations between cantilever responses and tip–sample
interaction are known.

The contact stiffnesses in the normal and lateral directions
kn and klat are given in equations (3) and (4). If one can
measure kn and klat, E∗ and G∗ can be obtained. The material
parameters of the tip (Et, G t, and νt) are known. The elastic
and shear moduli, and Poisson’s ratio of the sample, can then
be calculated utilizing the following relations:

E∗ = [(1 − ν2
t )/Et + (1 − ν2

s )/Es]−1 (123)

G∗ = [(2 − vt)/G t + (2 − vs)/Gs]−1 (124)

Gs = Es

2(1 + νs)
. (125)

In AFAM, the characteristic equation to calculate the contact
resonance frequency of vertical bending (ωc) can be obtained
following the method described in section 2.3. With the normal
contact viscosity being neglected (ηn = 0) and assuming that
the tip is located at the end of the cantilever (λ = 1), the
characteristic equation is

(βw L)3[1 + cos(βw L) cosh(βw L)]
+ kn

E Iy/L3
[cosh(βw L) sin(βw L)

− cos(βw L) sinh(βw L)] = 0 (126)

β4
w = ρ A

E Iy
ω2

c . (127)

Once ωc is measured, from equation (126), the normal contact
stiffness can be obtained by (Yamanaka and Nakano 1996,
Rabe et al 1996)

kn = − E Iy

L3

(βw L)3[1 + cos(βw L) cosh(βw L)]
[cosh(βw L) sin(βw L) − cos(βw L) sinh(βw L)] .

(128)

In TR and LE mode, under a certain normal load fc, the lateral
contact stiffness can be calculated from the characteristic
equation (41) (Song and Bhushan 2006a)

klat = G Jβθ

l2
{tan[βθ(1 − λ)L] − 1/ tan(βθλL)} (129)

β2
θ = ρ IP

G J
ω2

c . (130)

Here ωc represents the torsional contact resonance frequency.
Since equation (41) is obtained from the pure torsional
analysis, equation (129) can be used only if the pure torsional
approximation is valid.

The lateral viscosity ηlat is related to the energy dissipated
due to the tip–sample interaction (Song and Bhushan 2006c).
For TR mode

Edis = πηlat�[l2 |�c|2 + |φv(x = L)|2
+ 2l |�c| |φv(x = L)| cos(ϕ1 − ϕ2)] (131)

and for LE mode

Edis = πηlat�[g2
0 + l2 |�c|2 + |φv(x = L)|2

+ 2l |�c| |φv(x = L)| cos(ϕ1 − ϕ2)]. (132)
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Figure 26. Experimental contact resonance spectra of a cantilever with a silicon tip. The sample is Si(100) with RF-sputtered coating of
thickness 5 nm. The first (a) and third (b) flexural resonances were detected. The contact resonance spectra b1 and b2 were measured under
two static normal loads, 410 nN and 820 nN, respectively. The contact resonance spectra a1 and a2 were obtained after two series of AFAM
measurements under two static normal loads 410 nN and 820 nN, respectively (Amelio et al 2001).

Here, ϕ1 and ϕ2 are the phase angles of cantilever responses
�c and φv(x = L), respectively.

In TR mode, if klat is known, ηlat can be obtained using the
measured phase shift (Song and Bhushan 2005)

ηlat = {Iaklatl
2[e2RaL s1 − s2] + (klatl

2 Ra − G Jr1)s4

− (klatl
2 Ra + G Jr1)e

2Ra Ls3}
× {Ral

2�[e2RaL s1 − s2] + Ial
2�[e2RaLs3 − s4]}−1. (133)

Here, it is assumed λ = 1, s1 = cos(φ + Ia L), s2 =
cos(φ− IaL), s3 = sin(φ+ IaL), s4 = sin(φ− IaL), and Ra and
Ia are the real and imaginary parts of the complex number atr.
Again, equation (133) can only be applied if the pure torsional
approximation is valid.

Unlike the pure torsional analysis, the coupled torsional–
bending analysis of TR and LE mode could not lead to the
explicit relations between the lateral contact stiffness/viscosity
and cantilever torsional amplitude/phase shift, due to
the mathematical complexity. In the case where pure
torsional analysis cannot provide a good approximation for
the cantilever torsional response, parameter identification
methods, e.g. curve fitting, are needed for the extraction of a
sample’s mechanical properties.

Geometry and material properties of the cantilever and tip
are required to calculate the contact stiffness, viscosity and
sample elastic parameters using equations (3), (4), (128), (129)
and (133). In experiments, there are practical problems that
make the reliable quantitative measurement difficult. AFM
cantilevers may not behave perfectly like a clamped beam. It
is difficult to obtain precisely the geometric dimensions and
elastic constants of the cantilever and tip. Figure 26 shows
an example of contact resonances of a cantilever measured in
AFAM experiments (Amelio et al 2001). After two series of
measurements, different contact spectra were detected. It is
believed that the silicon tip radius was changed after successive
experiments, as shown in figure 27 (Amelio et al 2001). The
increase of the tip radius is caused by tip wear. Consequently,
the measured contact stiffness and contact resonance frequency
increase.

In the cases where the geometry and material parameters
of the cantilever are not known precisely, reference
measurements on samples with a known elastic constant may
be used to derive the contact stiffness of interest without
needing any cantilever information except the tip radius

Figure 27. Increase of the tip radius after successive AFAM
measurements on a sample of Si(100) with RF-sputtered coating of
thickness 5 nm (Amelio et al 2001).

(Rabe et al 1996). Using equation (128), the normal contact
stiffness of the sample of interest can be calculated by

kn = kref
n

�(βw L)

�(β ref
w L)

(134)

�(x) = x3[1 + cos x cosh x]
[cosh x sin x − cos x sinh x] (135)

where kref
n can be obtained from equation (3) given the normal

load and tip radius. Using equation (128), βw L can be
determined from

(βw L)4 = ω2
c (β

ref
w L)4

ωref2
c

= ω2
c (β

free
w L)4

ω2
free

(136)

where ωfree is the measured resonance frequency of the
cantilever in free vibration and β free

w L is the mode constant
of the clamped–free beam, which is determined from the
characteristic equation.

6. Closure

This survey paper reviews the recent developments in modeling
and applications of AFM dynamic modes. In the past two
decades, with the wide use of AFM in nano-scale surface
measurements and the quick development of innovative AFM
dynamic modes, a good understanding of AFM cantilever
dynamic behavior under tip–sample interaction in various
environments (vacuum, air, liquid) became imminent and
necessary for explaining AFM scanning images, improving
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measurement techniques and evaluating a sample’s material
properties. For this purpose, numerous analytical and FE
models have been developed to investigate surface-coupled
cantilever dynamics in different AFM dynamic modes. With
these analytical models, researchers have been able to set up
the relations of cantilever response to tip–cantilever interaction
for some of the AFM dynamic modes. These derived relations
provide methods for the quantitative evaluation of a sample’s
mechanical properties. Using FE models, researchers are
able to simulate and gain insights into the complex cantilever
behavior in, e.g., the FFM profiling process and TM operated
in liquid.

The ultimate goal of AFM-related research is to
develop AFM instruments and techniques that are capable
of quantitatively measuring samples’ surfaces properties.
Although there is still a long way to go, we certainly believe
that a full understanding and exploitation of the rich dynamics
of AFM cantilevers will provide us with prerequisites to
achieve this goal.
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